• Title/Summary/Keyword: Recombinant HBV

Search Result 19, Processing Time 0.033 seconds

Expression of Hepatitis B Virus Antigen by Recombinant Vaccinia Virus VV-$\textrm{HBV}_{L}$

  • Lee, Yun-Kyung;Yu, Jung-An;Ahn, Byung-Yoon;Aree Moon
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1997.04a
    • /
    • pp.82-82
    • /
    • 1997
  • The hepatitis B virus(HBV) is a small, enveloped virus with a circular, double-stranded DNA genome. HBV causes active and chronic hepatitis worldwide, including Korea, and is considered to be a major factor for liver cirrhosis and hepatocellular carcinoma. In contrast to the wealth of knowledge on the gene structure and expressional regulation, immunological and pathological mechanisms for HBV-induced hepatocellular injury are not well known. In the present study, vaccinia virus which has been demonstrated to be a useful eukaryotic expression vector was used to clone the gene for HBV surface antigen, L(S+preS2+preS1). The recombinant vaccinia virus vector, pMJ-L, which contains L surface antigen gene of adr-type HBV was constructed, and subseouently used for making recombinant vaccinia virus VV-$\textrm{HBV}_{L}$. Expression of the HBV antigen was examined by immunofluorescent antibody (IFA) test using mouse monoclonal anti-hepatitis B surface antigen. HBsAg was detected in the recombinant virus indicating that the VV-$\textrm{HBV}_{L}$ expressed S antigen successfully. The HBV-Vaccinia Virus recombinant obtained in this study is currently being used for studying the immunological aspects of HBV infection.

  • PDF

Expression of Recombinant HBV Pol Proteins in HepG2 Cells

  • Cho, Ginam;Na, Seun-Gon;Suh, Se-Won;Jung, Gu-Hung
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.440-447
    • /
    • 2000
  • In this study HepG2 cells were used to express and purify HBV pol proteins. In order to facilitate purification of HBV pol proteins, HBV pol and its deletion mutants were fused to MBP (Maltose Binding Protein). As a result we successfully expressed and partially purified both wild type and mutant recombinant HBV pol proteins by using an amylose resin and anti-MBP antibody. In the case of wild type, the anti-MBP antibody detected three bands. One was full-length and the others were generated by proteolysis of the terminal domain region. The expressed MBP/POL proteins were localized both in the cytoplasm and in the perinuclear region. The purified proteins had polymerase activity toward an exogenous homo-polymer template. The MBP/POL protein also had DNA synthesis activity in vivo, since the MBP/POL expression construct was able to complement a HBV polymerase mutant in trans.

  • PDF

5 Years Follow up Study of Anti HBs Titer After Basic Immunization by Recombinant HBV Vaccine (유전자재조합 B형간염 백신의 기본접종 5년후 추적항체역가에 관한 연구)

  • Kim, Hyun Jung;Lee, Chang Yeun;Hwang, Kwang Soo
    • Pediatric Infection and Vaccine
    • /
    • v.7 no.1
    • /
    • pp.136-142
    • /
    • 2000
  • Purpose : Although there are a lot of the reports about the persistence of anti HBs titer of plasma derives HBV vaccine, it is difficult to find the follow up studies of the recombinant HBV vaccine. We performed this study to compare the persistence of anti HBs titer by vaccination schedule and the seronegative rate of 5 years later according to Anti HBs titer after basic immunization in neonatal period by recombinant HBV vaccination. Methods : This study was performed on 420 neonates at Pusan Moon Hwa Hospital from April to December 1993, followed up for 5 years after basic immunization by recombinant HBV vaccine. The anti HBs titer test was done by radioimmunoassay(RIAAUSAB, Abbott laboratories). The positive anti HBs level that would protect against HBV infection was defined as a level equal to or greater than 10mIU/mL. Results : In this study the seronegative rate after 5 years was 5% in 2 month schedule group, 25.5% in 6 month schedule group(P>0.05). In 2 month schedule group the seronegative rate was 20% when anti HBs titer is lower than 200mIU/mL, 0% when more than 200mIU/mL(P>0.05). In 6 month schedule group the seronegative rate was 66.7% when anti HBs titer was lower than 200mIU/mL, 40% when 200~499.9mIU/mL, 23.9% when 500~999.9mIU/mL, 22.5% when more than 1000mIU/mL. Conclusion : In this study the seronegative rate after 5 years of recombinant HBV vaccination was 5~25.5%. The persistence of anti HBs titer was statistically irrelevant to schedule. The seronegative rate after 5 years was statistically irrelevant to anti HBs titer after basic immunization.

  • PDF

Microarrays for the Detection of HBV and HDV

  • Sun, Zhaohui;Zheng, Wenling;Zhang, Bao;Shi, Rong;Ma, Wenli
    • BMB Reports
    • /
    • v.37 no.5
    • /
    • pp.546-551
    • /
    • 2004
  • The increasing pace of development in molecular biology during the last decade has had a direct effect on mass testing and diagnostic applications, including blood screening. We report the model Microarray that has been developed for Hepatitis B virus (HBV) and Hepatitis D virus (HDV) detection. The specific primer pairs of PCR were designed using the Primer Premier 5.00 program according to the conserved regions of HBV and HDV. PCR fragments were purified and cloned into pMD18-T vectors. The recombinant plasmids were extracted from positive clones and the target gene fragments were sequenced. The DNA microarray was prepared by robotically spotting PCR products onto the surface of glass slides. Sequences were aligned, and the results obtained showed that the products of PCR amplification were the required specific gene fragments of HBV, and HDV. Samples were labeled by Restriction Display PCR (RD-PCR). Gene chip hybridizing signals showed that the specificity and sensitivity required for HBV and HDV detection were satisfied. Using PCR amplified products to construct gene chips for the simultaneous clinical diagnosis of HBV and HDV resulted in a quick, simple, and effective method. We conclude that the DNA microarray assay system might be useful as a diagnostic technique in the clinical laboratory. Further applications of RD-PCR for the sample labeling could speed up microarray multi-virus detection.

Simple and Rapid Identification of Low Level Hepatitis B Virus DNA by the Nested Polymerase Chain Reaction

  • Jang, Jeong-Su;Lee, Kong-Joo
    • Archives of Pharmacal Research
    • /
    • v.19 no.6
    • /
    • pp.469-474
    • /
    • 1996
  • A rapid and sensitive method has been developed to detect hepatitis B virus DNA (HBV) by nested polymerase chain reaction (PCR) technique with primers specific for the surface and core regions in capillary thermal cycler within 80 min. The lower limit for detection by present PCR method is $10^{-5}$ pg of recombinant HBV DNA which is equivalent to that determined by one round of PCR amplification and Southern blot hybridization analysis. When boiled HBV positive serum was serially diluted 10-fold, HBV DNA was successfully determined in $1{\mu}l-10^{-3}$ of serum. HBV DNA was detected by present method in 69 clinical samples including HBsAg positives and negatives by enzyme-linked immunosorbent assay (ELISA). When serum samples were amplified by nested PCR using surface and core region primers, HBV DNAs were detected in 37 of 69 samples (53.6%) and 18 of 69 samples (26.1%), respectively. These results can inform the infectious state of HBsAg positive pateints. A simple and rapid nested PCR protocol by using boiled serum as DNA template has been described for the clinical utility to determine HBV DNA in human serum.

  • PDF

The Production of HBsAg in the Recombinant Yeast Cells (재조합 효모 세포내에서의 간염백신 생산)

  • Park, Cha-Yong;Lee, Hei-Chan
    • Microbiology and Biotechnology Letters
    • /
    • v.14 no.6
    • /
    • pp.455-460
    • /
    • 1986
  • Dane particle was prepared from the plasma of chronic HBsAg carrier with high levels of HBsAg activity. DNA extracted front Dane particle core after a DNA polymerase reaction with $\alpha$-($^{32}$P) dNTP, was identified as HBV DNA by liquid scintillation counter and agarose gel electrophoresis-G.M. counting. To produce Hepatitis B surface antigen for use as a vaccine against Hepatitis B virus infection, yeast strains harboring recombinant plasmid with Apase promoter was used. Recombinant plasmid was construced from pHBV 130 and pAN 82, transformed into E coli, and then transferred into yeast strains. HBsAg was produced by derepression in Burkholder minimal medium with controlled inorganic phosphate concentration. The kinetics of HBsAg production was also investigated. Total HBsAg activity increased rapidly between 3 and 6 hours after transfer to phosphate-free medium and reached a maximum at around 9th hour. The transfer into phosphate-free medium after 6 hours in high phosphate cell growth medium gave maximum activity.

  • PDF

Expression of Hepatitis B Virus S Gene in Pichia pastoris and Application of the Product for Detection of Anti-HBs Antibody

  • Hu, Bo;Liang, Minjian;Hong, Guoqiang;Li, Zhaoxia;Zhu, Zhenyu;Li, Lin
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.683-689
    • /
    • 2005
  • Antibody to hepatitis B surface antigen (HBsAb) is the important serological marker of the hepatitis B virus (HBV) infection. Conventionally, the hepatitis B surface antigen (HBsAg) obtained from the plasma of HBV carriers is used as the diagnostic antigen for detection of HBsAb. This blood-origin antigen has some disadvantages involved in high cost, over-elaborate preparation, risk of infection, et al. In an attempt to explore the suitable recombinant HBsAg for the diagnostic purpose, the HBV S gene was expressed in Pichia pastoris and the product was applied for detection of HBsAb. Hepatitis B virus S gene was inserted into the yeast vector and the expressed product was analyzed by sodium dodecyl sulphate polyacrolamide gel electrophoresis (SDS-PAGE), immunoblot, electronic microscope and enzyme linked immunosorbent assay (ELISA). The preparations of synthesized S protein were applied to detect HBsAb by sandwich ELISA. The S gene encoding the 226 amino acid of HBsAg carrying ahexa-histidine tag at C terminus was successfully expressed in Pichia pastoris. The His-Tagged S protein in this strain was expressed at a level of about 14.5% of total cell protein. Immunoblot showed the recombinant HBsAg recognized by monoclonal HBsAb and there was no cross reaction between all proteins from the host and normal sera. HBsAb detection indicated that the sensitivity reached 10 mIu (micro international unit)/ml and the specificity was 100% with HBsAb standard of National Center for Clinical Laboratories. A total of 293 random sera were assayed using recombinant S protein and a commercial HBsAb ELISA kit (produced by blood-origin HBsAg), 35 HBsAb positive sera and 258 HBsAb negative sera were examined. The same results were obtained with two different reagents and there was no significant difference in the value of S/CO between the two reagents. The recombinant HBV S protein with good immunoreactivity and specificity was successfully expressed in Pichia pastoris. The reagent for HBsAb detection prepared by Pichia pastoris-derived S protein showed high sensitivity and specificity for detection of HBsAb standard. And a good correlation was obtained between the reagent produced by recombinant S protein and commercial kit produced by blood-origin HBsAg in random samples.

Cloning of the Hepatitis B Surface Antigen Containing Pre-surface Antigen Region and Poly(A) Addition Site (Pre-surface antigen 지역과 poly(A) addition site가 포함된 B형 간염 표면항원 유전자의 재조합)

  • Kim, Sang-Hae;Kim, Yong-Sok;Park, Mee-Young;Park, Hyune-Mo
    • The Korean Journal of Zoology
    • /
    • v.28 no.3
    • /
    • pp.166-178
    • /
    • 1985
  • In order to express hepatitis B surface antigen $(HB_sAg)$ containing pre-surface antigen region in mammalian calls, 2.7 kb DNA fragment containing pre-surface region-$HB_sAg$ gene poly(A) addition site of HBV genome was cloned into simian virus 40(SV 40) based chimeric vector pSVOB. 2.7 kb DNA fragment was derived from pHBVD 107 containing tandem copies of the HBV genome in a head-to-tail arrangement by Bgl II digestion. Construction of the vector pSVOE involved the incorporation of SV40 sequences spanning the viral origin of replication and 72 bp repeats (enhancer) into a pBR 322 derivative lacking sequences which inhibit replication in mammalian cells. Bam HI linker was inserted at the Pvu II site in the proximity of SV40 late promoter of pSVOE and named as pSVOB. To construct the recombinant plasmid pSVBS, pHBVD 107 was digested with Bgl II to isolate 2.7kb DNA fragment and the fragment was ligated into the Bam HI site of pSVOB by ligation. Preliminary result showed that the recombinant plasmid pSVBS produced $HB_sAg$ in the monkey cell producing large T antigen (COS cell).

  • PDF

Construction and Characterization of an Anti-Hepatitis B Virus preS1 Humanized Antibody that Binds to the Essential Receptor Binding Site

  • Wi, Jimin;Jeong, Mun Sik;Hong, Hyo Jeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1336-1344
    • /
    • 2017
  • Hepatitis B virus (HBV) is a major cause of liver cirrhosis and hepatocellular carcinoma. With recent identification of HBV receptor, inhibition of virus entry has become a promising concept in the development of new antiviral drugs. To date, 10 HBV genotypes (A-J) have been defined. We previously generated two murine anti-preS1 monoclonal antibodies (mAbs), KR359 and KR127, that recognize amino acids (aa) 19-26 and 37-45, respectively, in the receptor binding site (aa 13-58, genotype C). Each mAb exhibited virus neutralizing activity in vitro, and a humanized version of KR127 effectively neutralized HBV infection in chimpanzees. In the present study, we constructed a humanized version (HzKR359-1) of KR359 whose antigen binding activity is 4.4-fold higher than that of KR359, as assessed by competitive ELISA, and produced recombinant preS1 antigens (aa 1-60) of different genotypes to investigate the binding capacities of HzKR359-1 and a humanized version (HzKR127-3.2) of KR127 to the 10 HBV genotypes. The results indicate that HzKR359-1 can bind to five genotypes (A, B, C, H, and J), and HzKR127-3.2 can also bind to five genotypes (A, C, D, G, and I). The combination of these two antibodies can bind to eight genotypes (A-D, G-J), and to genotype C additively. Considering that genotypes A-D are common, whereas genotypes E and F are occasionally represented in small patient population, the combination of these two antibodies might block the entry of most virus genotypes and thus broadly neutralize HBV infection.

Expression of Hepatitis B Virus X Protein in Hepatocytes Suppresses CD8+ T Cell Activity

  • Lee, Mi Jin;Jin, Young-hee;Kim, Kyongmin;Choi, Yangkyu;Kim, Hyoung-Chin;Park, Sun
    • IMMUNE NETWORK
    • /
    • v.10 no.4
    • /
    • pp.126-134
    • /
    • 2010
  • Background: $CD8^+$ T cells contribute to the clearance of Hepatitis B virus (HBV) infection and an insufficient $CD8^+$ T cell response may be one of the major factors leading to chronic HBV infection. Since the HBx antigen of HBV can up-regulate cellular expression of several immunomodulatory molecules, we hypothesized that HBx expression in hepatocytes might affect $CD8^+$ T cell activity. Methods: We analyzed the activation and apoptosis of $CD8^+$ T cells co-cultured with primary hepatocytes rendered capable of expressing HBx by recombinant baculovirus infection. Results: Expression of HBx in hepatocytes induced low production of $interferon-{\gamma}$ and apoptosis of CD8+ T cells, with no effect on CD8 T cell proliferation. However, transcriptional levels of H-2K, ICAM-1 and PD-1 ligand did not correlate with HBx expression in hepatocytes. Conclusion: Our results suggest that HBx may inhibit $CD8^+$ T cell response by regulation of $interferon-{\gamma}$ production and apoptosis.