• Title/Summary/Keyword: Recognition of space

Search Result 1,174, Processing Time 0.021 seconds

Face Detection based on Video Sequence (비디오 영상 기반의 얼굴 검색)

  • Ahn, Hyo-Chang;Rhee, Sang-Burm
    • Journal of the Semiconductor & Display Technology
    • /
    • v.7 no.3
    • /
    • pp.45-49
    • /
    • 2008
  • Face detection and tracking technology on video sequence has developed indebted to commercialization of teleconference, telecommunication, front stage of surveillance system using face recognition, and video-phone applications. Complex background, color distortion by luminance effect and condition of luminance has hindered face recognition system. In this paper, we have proceeded to research of face recognition on video sequence. We extracted facial area using luminance and chrominance component on $YC_bC_r$ color space. After extracting facial area, we have developed the face recognition system applied to our improved algorithm that combined PCA and LDA. Our proposed algorithm has shown 92% recognition rate which is more accurate performance than previous methods that are applied to PCA, or combined PCA and LDA.

  • PDF

An Implementation of the Olfactory Recognition Contents for Ubiquitous (유비쿼터스를 위한 후각 인식 컨텐츠 구현)

  • Lee, Hyeon Gu;Rho, Yong Wan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.4 no.3
    • /
    • pp.85-90
    • /
    • 2008
  • Recently, with the sensor technology, research about the electronic nose system which imitated the olfactory organ are being pushed actively. But, in case of general electronic nose system, an aroma is measured at the laboratory space where blocked external environment and is analyzed a part of measured data. In this paper, we propose the system which can measure and recognize an aroma in natural environment. We propose the Entropy algorithm which can detect the sensor reaction section among the continuous detection processing about an aroma. And we implement the aroma recognition system using the PCA(Principal Components Analysis) and K-NN(K-Nearest Neighbor) about the detected aroma. In order to evaluate the performance, we measured the aroma pattern, about 9 aroma oil, 50 times respectively. And we experimented the aroma detection and recognition using this. There was an error of 0.2s in the aroma detection and we get 84.3% recognition rate of the aroma recognition.

A Facial Expression Recognition Method Using Two-Stream Convolutional Networks in Natural Scenes

  • Zhao, Lixin
    • Journal of Information Processing Systems
    • /
    • v.17 no.2
    • /
    • pp.399-410
    • /
    • 2021
  • Aiming at the problem that complex external variables in natural scenes have a greater impact on facial expression recognition results, a facial expression recognition method based on two-stream convolutional neural network is proposed. The model introduces exponentially enhanced shared input weights before each level of convolution input, and uses soft attention mechanism modules on the space-time features of the combination of static and dynamic streams. This enables the network to autonomously find areas that are more relevant to the expression category and pay more attention to these areas. Through these means, the information of irrelevant interference areas is suppressed. In order to solve the problem of poor local robustness caused by lighting and expression changes, this paper also performs lighting preprocessing with the lighting preprocessing chain algorithm to eliminate most of the lighting effects. Experimental results on AFEW6.0 and Multi-PIE datasets show that the recognition rates of this method are 95.05% and 61.40%, respectively, which are better than other comparison methods.

User-customized Interaction using both Speech and Face Recognition (음성인식과 얼굴인식을 사용한 사용자 환경의 상호작용)

  • Kim, Sung-Ill;Oh, Se-Jin;Lee, Sang-Yong;Hwang, Seung-Gook
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2007.04a
    • /
    • pp.397-400
    • /
    • 2007
  • In this paper, we discuss the user-customized interaction for intelligent home environments. The interactive system is based upon the integrated techniques using both speech and face recognition. For essential modules, the speech recognition and synthesis were basically used for a virtual interaction between user and proposed system. In experiments, particularly, the real-time speech recognizer based on the HM-Net(Hidden Markov Network) was incorporated into the integrated system. Besides, the face identification was adopted to customize home environments for a specific user. In evaluation, the results showed that the proposed system was easy to use for intelligent home environments, even though the performance of the speech recognizer did not show a satisfactory results owing to the noisy environments.

  • PDF

Low Resolution Rate Face Recognition Based on Multi-scale CNN

  • Wang, Ji-Yuan;Lee, Eung-Joo
    • Journal of Korea Multimedia Society
    • /
    • v.21 no.12
    • /
    • pp.1467-1472
    • /
    • 2018
  • For the problem that the face image of surveillance video cannot be accurately identified due to the low resolution, this paper proposes a low resolution face recognition solution based on convolutional neural network model. Convolutional Neural Networks (CNN) model for multi-scale input The CNN model for multi-scale input is an improvement over the existing "two-step method" in which low-resolution images are up-sampled using a simple bi-cubic interpolation method. Then, the up sampled image and the high-resolution image are mixed as a model training sample. The CNN model learns the common feature space of the high- and low-resolution images, and then measures the feature similarity through the cosine distance. Finally, the recognition result is given. The experiments on the CMU PIE and Extended Yale B datasets show that the accuracy of the model is better than other comparison methods. Compared with the CMDA_BGE algorithm with the highest recognition rate, the accuracy rate is 2.5%~9.9%.

Optimised ML-based System Model for Adult-Child Actions Recognition

  • Alhammami, Muhammad;Hammami, Samir Marwan;Ooi, Chee-Pun;Tan, Wooi-Haw
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.929-944
    • /
    • 2019
  • Many critical applications require accurate real-time human action recognition. However, there are many hurdles associated with capturing and pre-processing image data, calculating features, and classification because they consume significant resources for both storage and computation. To circumvent these hurdles, this paper presents a recognition machine learning (ML) based system model which uses reduced data structure features by projecting real 3D skeleton modality on virtual 2D space. The MMU VAAC dataset is used to test the proposed ML model. The results show a high accuracy rate of 97.88% which is only slightly lower than the accuracy when using the original 3D modality-based features but with a 75% reduction ratio from using RGB modality. These results motivate implementing the proposed recognition model on an embedded system platform in the future.

Object Recognition using Neural Network (신경회로망을 이용한 물체인식)

  • Kim, Hyoung-Geun;Park, Sung-Kyu;Song, Chull;Choi, Kap-Seok
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.3
    • /
    • pp.197-205
    • /
    • 1992
  • In this paper object recognition using neural network is studied. The recognition is accomplished by matching linear line segments which are formed by local features extracted from the curvature points. Since there is similarities among segments. The boundary of models is not distinct in feature space. Due to these indistinctness the ambiguity of recognition occurs, and the recognition rate becomes degraded according to the limitation of boundary decision capability of neural network for similar of features. Object recognition and to improve recognition rate. Local features are used to represent the object effectively. The validity of the object recognition system is demonstrated by experiments for the occluded and varied objects.

  • PDF

Photon-counting linear discriminant analysis for face recognition at a distance

  • Yeom, Seok-Won
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.12 no.3
    • /
    • pp.250-255
    • /
    • 2012
  • Face recognition has wide applications in security and surveillance systems as well as in robot vision and machine interfaces. Conventional challenges in face recognition include pose, illumination, and expression, and face recognition at a distance involves additional challenges because long-distance images are often degraded due to poor focusing and motion blurring. This study investigates the effectiveness of applying photon-counting linear discriminant analysis (Pc-LDA) to face recognition in harsh environments. A related technique, Fisher linear discriminant analysis, has been found to be optimal, but it often suffers from the singularity problem because the number of available training images is generally much smaller than the number of pixels. Pc-LDA, on the other hand, realizes the Fisher criterion in high-dimensional space without any dimensionality reduction. Therefore, it provides more invariant solutions to image recognition under distortion and degradation. Two decision rules are employed: one is based on Euclidean distance; the other, on normalized correlation. In the experiments, the asymptotic equivalence of the photon-counting method to the Fisher method is verified with simulated data. Degraded facial images are employed to demonstrate the robustness of the photon-counting classifier in harsh environments. Four types of blurring point spread functions are applied to the test images in order to simulate long-distance acquisition. The results are compared with those of conventional Eigen face and Fisher face methods. The results indicate that Pc-LDA is better than conventional facial recognition techniques.

Creation of a Voice Recognition-Based English Aided Learning Platform

  • Hui Xu
    • Journal of Information Processing Systems
    • /
    • v.20 no.4
    • /
    • pp.491-500
    • /
    • 2024
  • In hopes of resolving the issue of poor quality of information input for teaching spoken English online, the study creates an English teaching assistance model based on a recognition algorithm named dynamic time warping (DTW) and relies on automated voice recognition technology. In hopes of improving the algorithm's efficiency, the study modifies the speech signal's time-domain properties during the pre-processing stage and enhances the algorithm's performance in terms of computational effort and storage space. Finally, a simulation experiment is employed to evaluate the model application's efficacy. The study's revised DTW model, which achieves recognition rates of above 95% for all phonetic symbols and tops the list for cloudy consonant recognition with rates of 98.5%, 98.8%, and 98.7% throughout the three tests, respectively, is demonstrated by the study's findings. The enhanced model for DTW voice recognition also presents higher efficiency and requires less time for training and testing. The DTW model's KS value, which is the highest among the models analyzed in the KS value analysis, is 0.63. Among the comparative models, the model also presents the lowest curve position for both test functions. This shows that the upgraded DTW model features superior voice recognition capabilities, which could significantly improve online English education and lead to better teaching outcomes.

Gesture Recognition Using Higher Correlation Feature Information and PCA

  • Kim, Jong-Min;Lee, Kee-Jun
    • Journal of Integrative Natural Science
    • /
    • v.5 no.2
    • /
    • pp.120-126
    • /
    • 2012
  • This paper describes the algorithm that lowers the dimension, maintains the gesture recognition and significantly reduces the eigenspace configuration time by combining the higher correlation feature information and Principle Component Analysis. Since the suggested method doesn't require a lot of computation than the method using existing geometric information or stereo image, the fact that it is very suitable for building the real-time system has been proved through the experiment. In addition, since the existing point to point method which is a simple distance calculation has many errors, in this paper to improve recognition rate the recognition error could be reduced by using several successive input images as a unit of recognition with K-Nearest Neighbor which is the improved Class to Class method.