• 제목/요약/키워드: Recognition algorithm

검색결과 3,560건 처리시간 0.033초

영상처리를 위한 SIMT 기반 Image Signal Processor 구현 (Implementation of the SIMT based Image Signal Processor for the Image Processing)

  • 황윤섭;전희경;이관호;이광엽
    • 전기전자학회논문지
    • /
    • 제20권1호
    • /
    • pp.89-93
    • /
    • 2016
  • 본 논문에서는 다양한 영상 전처리 알고리즘들을 적용할 수 있고, 영상 인식과 같이 ISP 응용 프로그램을 병렬로 처리 가능한 SIMT(Single Instruction Multiple Threads) 기반 Image Signal Processor를 제안하였다. 기존의 ISP는 입력 영상의 품질 개선을 위하여 영상 개선 알고리즘이 하드웨어로 설계되어 처리 속도는 빠르지만 다양한 영상 처리 알고리즘에 따라 성능 최적화에 어려움이 있었다. 제안한 ISP는 명령어를 기반으로 한 프로세서로서 다양한 영상 처리 알고리즘을 수행하고 SIMT 구조를 적용하여 알고리즘을 병렬로 수행해 성능을 개선하였다. 제안하는 ISP를 검증하기 위해 Xilinx Virtex-7을 탑재한 VC707 Board를 사용하였으며 cell multicore processor와 비교했을 경우 수행시간이 약 71%, ARM Cortex-A9과 ARM Cortex-A15와 비교하였을 경우 각각 63%, 33% 성능을 개선하였다.

지역 가중치 적용 퍼지 클러스터링을 이용한 효과적인 이미지 분할 (Effective Image Segmentation using a Locally Weighted Fuzzy C-Means Clustering)

  • 나이마 알람저;김종면
    • 한국컴퓨터정보학회논문지
    • /
    • 제17권12호
    • /
    • pp.83-93
    • /
    • 2012
  • 본 논문에서는 기존의 퍼지 클러스터링 기반 이미지 분할의 성능과 계산 효율을 개선하기 위해 퍼지 클러스터링의 목적 함수를 수정하는 이미지 분할 프레임워크를 제안한다. 제안하는 이미지 분할 프레임워크는 주변 픽셀들에 가중치를 부여함으로써 현재 센터 픽셀 연산을 위해 주변 픽셀들의 중요성을 고려하는 지역 가중치 적용 퍼지 클러스터링 기법을 포함한다. 이러한 가중치들은 각 멤버쉽들의 중요성을 표시하기 위해 현재 픽셀과 대응되는 각 주변 픽셀들 사이의 거리차에 의해 결정되어 지며, 이러한 프로세서는 향상된 클러스터링 성능을 보장한다. 제안하는 방법의 성능을 평가하기 위해 분할 계수, 분할 엔트로피, Xie-Bdni 함수, Fukuyzma-Sugeno 함수와 같은 네 가지 클러스터 유효성 함수를 이용하여 분석하였다. 모의실험 결과, 제안한 방법은 기존의 다른 퍼지 클러스터링 기법들보다 클러스터 유효성 함수들뿐만 아니라 분할과 조밀도 측면에서 우수한 성능을 보였다.

복잡한 배경에서 신경망을 이용한 얼굴인식 (Face Recognition on complex backgrounds using Neural Network)

  • 한준희;남기환;박호식;이영식;정연길;나상동;배철수
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.1149-1152
    • /
    • 2005
  • 복잡한 배경을 지닌 이미지에서 얼굴을 검출하기란 매우 어려운 일이다. 본 논문에서는 신경망 모델을 기반으로 한 제한생성모델(CGM: Constrained Generative Model)을 제안한다. 학습 과정의 목표라 할 수 있는 생성은 신경망 모델이 입력 데이터를 발생시킬 확률을 계산하도록 하는 것이고, 계산하는데 걸리는 시간을 줄이기 위해서 고속 탐지 알고리즘을 제안한다. 얼굴 측면 검출과 오 인식의 수를 줄이기 위해서 조건을 혼합한 신경망을 사용하였고 반증으로 인한 제한을 둠으로써 모델의 측정 품질을 증가시켰다. 본 논문에서 제안한 검출 알고리즘이 0$_{\circ}$ ${\sim}$60$_{\circ}$ 사이에서는 90%정도의 검출율을 나타냄을 알 수 있었다.

  • PDF

ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 컨테이너 인식 시스템 (Container Image Recognition using ART2-based Self-Organizing Supervised Learning Algorithm)

  • 정병희;김재용;조재현;김광백
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 추계종합학술대회
    • /
    • pp.393-398
    • /
    • 2005
  • 본 논문에서는 ART2 기반 자가 생성 지도 학습 알고리즘을 이용한 운송 컨테이너 식별자 인식 시스템을 제안한다. 일반적으로 운송 컨테이너의 식별자들은 글자의 색이 검정색 또는 흰색으로 이루어져 있는 특징이 있다. 이러한 특성을 고려하여 원 컨테이너 영상에 대해 검은색과 흰색을 제외한 모든 부분을 잡음으로 처리하기 위해 퍼지를 이용한 잡은 판단 방법을 적용하여 식별자 영역과 잡음을 구별한다. 식별자 영역을 제외한 잡음 영역을 전체 영상의 평균 픽셀값으로 대체시킨다. 그리고 Sobel 마스크를 이용하여 에지를 검출하고, 추출된 에지를 이용하여 수직 블록과 수평 블록을 검출하여 컨테이너의 식별자 영역을 추출하고 이진화한다. 이진화된 식별자 영역에 대해 검정색의 빈도수를 이용하여 흰바탕과 민바탕을 구분하고 8방향 윤곽선 추적 알고리즘을 적용하여 개별 식별자를 추출한다. 개별 식별자 인식을 위해 ART2 기반 자가 생성 지도 학습 알고리즘은 입력층과 은닉층 사이에 ART2를 적용하여 은닉층의 노드를 생성하고, 은닉층과 출력층 사이에 일반화된 델타 학습 방법과 Delta-bar-Delta 알고리즘을 적용하여 학습 성능을 개선한다. 실제 컨테이너 영상을 대상으로 실험한 결과, 기존의 식별자 추출 방법보다 제안된 식별자 추출 방법이 개선되었다. 그리고 기존의 식별자 인식 알고리즘보다 제안된 ART2 기반 자가 생성 지도 학습 알고리즘이 식별자의 학습 및 인식에 있어서 우수한 성능이 있음을 확인하였다.

  • PDF

복합잡음 환경에서 에지 보존을 위한 영상복원 (Image Restoration for Edge Preserving in Mixed Noise Environment)

  • ;김남호
    • 한국정보통신학회논문지
    • /
    • 제18권3호
    • /
    • pp.727-734
    • /
    • 2014
  • 디지털 영상처리 기술은 영상의 압축, 인식 그리고 복원 등 많은 분야에서 연구가 진행되고 있다. 그러나 여전히 영상의 획득, 저장 및 전송하는 과정에서 잡음에 의해 영상의 열화가 발생하고 있다. 일반적으로 영상에 첨가되는 대표적인 잡음으로는 가우시안 잡음, 임펄스 잡음, 가우시안 및 임펄스 잡음이 중첩된 복합잡음 등이 있으며, 이러한 복합잡음을 제거하기 위해 다양한 연구가 진행되고 있다. 본 논문에서는 에지를 보존하고 복합잡음을 제거하기 위하여, 잡음 판단을 거친 후, 화소집합의 메디안값 및 평균값에 의해 적응 가중치를 설정하여 처리하는 영상복원 필터 알고리즘을 제안하였다. 그리고 시뮬레이션을 통해 기존의 방법들과 비교하였으며, 판단의 기준으로 PSNR(peak signal to noise ratio)을 사용하였다.

다수의 보행자 추적과정에서 특징정보를 이용한 보행자 검출 알고리즘 설계 (Design of Pedestrian Detection Algorithm Using Feature Data in Multiple Pedestrian Tracking Process)

  • 한명호;류창주;이상덕;한승조
    • 한국정보통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.641-647
    • /
    • 2018
  • 최근 여러 목적으로 영상 정보를 제공하는 CCTV는 지능형으로 변화하고 있으며, 컴퓨터 비전을 이용한 자동화 응용 범위가 증가하고 있다. 보행자 및 차량 등의 정확한 인식을 위해 신뢰성이 높은 검출방법을 수행하여야 하며 이를 위해 다양한 방법들이 연구되고 있다. 본 논문에서는 다수의 보행자가 움직이는 상황에서 보행자의 세 가지 특징 정보를 획득하여 다수의 보행자들을 검출하는 방법을 제안한다. 제안하는 방법은 보행자 검출 및 추적에 실패하거나 혼동되는 상황을 최소화 하면서 각각의 보행자를 구별한다. 보행자들끼리 근접하거나 겹치는 경우 미리 저장된 프레임 특징 정보를 이용하여 보행자를 구별 및 검출한다.

자질집합선택 기반의 기계학습을 통한 한국어 기본구 인식의 성능향상 (Improving the Performance of Korean Text Chunking by Machine learning Approaches based on Feature Set Selection)

  • 황영숙;정후중;박소영;곽용재;임해창
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제29권9호
    • /
    • pp.654-668
    • /
    • 2002
  • In this paper, we present an empirical study for improving the Korean text chunking based on machine learning and feature set selection approaches. We focus on two issues: the problem of selecting feature set for Korean chunking, and the problem of alleviating the data sparseness. To select a proper feature set, we use a heuristic method of searching through the space of feature sets using the estimated performance from a machine learning algorithm as a measure of "incremental usefulness" of a particular feature set. Besides, for smoothing the data sparseness, we suggest a method of using a general part-of-speech tag set and selective lexical information under the consideration of Korean language characteristics. Experimental results showed that chunk tags and lexical information within a given context window are important features and spacing unit information is less important than others, which are independent on the machine teaming techniques. Furthermore, using the selective lexical information gives not only a smoothing effect but also the reduction of the feature space than using all of lexical information. Korean text chunking based on the memory-based learning and the decision tree learning with the selected feature space showed the performance of precision/recall of 90.99%/92.52%, and 93.39%/93.41% respectively.

RFID를 이용한 출입문 제어 시스템 연구 (A Study of Gate Control System Using RFID)

  • 강성철;김형찬;도양회;이광만;김도현
    • 한국산학기술학회논문지
    • /
    • 제8권6호
    • /
    • pp.1505-1512
    • /
    • 2007
  • 유비쿼터스 환경을 구성하는 핵심기술 중 하나인 RFID 기술은 각종 물품에 소형 칩을 부착해 사물의 정보와 주변 환경정보를 무선주파수로 전송 처리하는 비접촉식 인식시스템이다. 현재 RFID 기술은 미들웨어 및 무선 인터페이스 등에 대한 연구가 진행되고 있으며, 또한 물류 및 유통 등의 분야를 비롯한 다양한 응용 분야에 RFID 시스템을 개발하고 있다. 본 논문에서는 지역이나 시설에 대한 보안 및 안전을 위하여 RFID 미들웨어 기반의 출입문 제어 시스템을 설계하고 구현한다. 이를 위하여 RFID EPC 코드에 의한 사용자의 출입을 인증하기 위한 알고리즘을 제시하고, RFID 기반의 사용자 인증 모듈, 다수의 출입문을 개폐하는 제어 모듈, 출입문의 상태 관리 모듈, 출입 여부도시 모듈, 테스트용 프로그램 등을 구현한다.

  • PDF

기저 함수의 대칭성을 이용한 저니키 모멘트의 효율적인 계산 방법 (An Efficient Computation Method of Zernike Moments Using Symmetric Properties of the Basis Function)

  • 황선규;김회율
    • 한국정보과학회논문지:소프트웨어및응용
    • /
    • 제31권5호
    • /
    • pp.563-569
    • /
    • 2004
  • 저니키 모멘트(Zernike moment)는 영상의 표현 능력이 뛰어나기 때문에 객체 인식 또는 내용기반 영상 검색 시스템에서 많이 사용되었으나, 정의식이 복잡하기 때문에 많은 연산량을 필요로 하는 단점이 있다. 저니키 모멘트를 빠르게 계산하는 기존의 방법들은 주로 1차원 실수 방사 다항식을 빠르게 계산하는 방법에 중점을 두었다. 본 논문에서는 저니키 복소 기저 함수의 대칭성을 유도하여 저니키 기저함수를 빠르게 계산하고 입력 영상으로부터 저니키 모멘트를 효율적으로 추출하는 방법을 제안한다. 제안하는 방법은 저니키 기저 함수 계산에 필요한 연산량을 기존 방법의 약 20%로 줄이고, 저니키 모멘트 추출에 필요한 곱셈 연산을 25%로 감소시킨다. 또한, 저니키 모멘트를 특징 벡터로 이용하는 시스템 구현 시 필요한 메모리 요구량도 기존 방법의 25%만을 필요로 한다. 제안하는 방법은 회전 모멘트, 의사 저니키 모멘트, ART(Angular Radial Transform) 등의 계산에도 같은 방식으로 적용될 수 있다.

클러스터링과 방사기저함수 네트워크를 이용한 실시간 유도전동기 고장진단 (Real-time Fault Diagnosis of Induction Motor Using Clustering and Radial Basis Function)

  • 박장환;이대종;전명근
    • 조명전기설비학회논문지
    • /
    • 제20권6호
    • /
    • pp.55-62
    • /
    • 2006
  • 본 논문에서는 3상 유도전동기의 고장진단을 수행하기 위해 패턴인식에 기반을 둔 진단 알고리즘을 제안한다. 실험 장치는 유도전동기 구동의 기계적 모듈과 고장신호를 구하기 위한 데이터 획득 모듈로 구성하였다. 진단 절차를 위한 첫 번째 단계로서 전처리 과정은 획득한 전류를 단순화하고 정규화 하는 것을 수행한다. 데이터의 단순화 과정은 3상전류를 Concrodia 벡터의 크기로 변환하는 것을 적용한다. 다음으로 특징 추출 단계를 커널 주성분 분석과 선형판별분석으로 수행하며, 마지막으로, 분류기는 방사기저함수 네트워크를 사용한다. 다양한 부하에 대하여 몇몇의 전기적 고장과 기계적 고장 하에서 획득한 데이터를 이용하여 제안된 방법의 타당성을 검증한다.