• Title/Summary/Keyword: Recognition System of License Plates

Search Result 46, Processing Time 0.026 seconds

A High Performance License Plate Recognition System (고속처리 자동차 번호판 인식시스템)

  • 남기환;배철수
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.8
    • /
    • pp.1352-1357
    • /
    • 2002
  • This Paper describes algorithm to extract license plates in vehicle images. Conventional methods perform preprocessing on the entire vehicle image to produce the edge image and binarize it. Hough transform is applied to the binary image to find horizontal and vertical lines, and the license plate area is extracted using the characteristics of license plates. Problems with this approach are that real-time processing is not feasible due to long processing time and that the license plate area is not extracted when lighting is irregular such as at night or when the plate boundary does not show up in the image. This research uses the gray level transition characteristics of license plates to verify the digit area by examining the digit width and the level difference between the background area the digit area, and then extracts the plate area by testing the distance between the verified digits. This research solves the problem of failure in extracting the license plates due to degraded plate boundary as in the conventional methods and resolves the problem of the time requirement by processing the real time such that practical application is possible. This paper Presents a power automated license plate recognition system, which is able to read license numbers of cars, even under circumstances, which are far from ideal. In a real-life test, the percentage of rejected plates wan 13%, whereas 0.4% of the plates were misclassified. Suggestions for further improvements are given.

Development of an Automatic Vehicle License Plate Recognition System (자동차 번호판 자동 인식 시스템의 개발)

  • Park, Zin-Woo;Hwang, Young-Hwan;Choi, Hwan-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1995.07b
    • /
    • pp.1002-1005
    • /
    • 1995
  • This paper presents an enhanced preprocessing and recognition algorithm for automatic vehicle license plate recognition system. The algorithm first applies horizontal gradient filter followed by thresholding and mathematical morphology operation for preprocessing. The final stage of the preprocessing is the application of connected component analysis in order to estimate the license plate region. For the recognition of the serial numbers of the plates, we developed a very effective algorithm. We call this zerocrossing count algorithm. This paper presents a detail of this algorithm and compare the performance with a template matching algorithm which utilizes correlation coefficient.

  • PDF

License Plate Recognition System Using Hotelling Transform (호텔링 변환을 이용한 자동차 번호판 인식시스템에 관한 연구)

  • Kim, Tae-Woo;Kang, Yong-Seok
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.2 no.1
    • /
    • pp.29-35
    • /
    • 2009
  • In this paper by using the image taken from the rear of the vehicle to effectively extract the license plate and how to recognize the characters appearing in the offer. How to existing research on the entire video by following the pre-edge (edge) images to obtain yijinhwa. Qualified heopeu in a binary image (Hough) to convert the horizontal and vertical lines to obtain, using the characteristics of the plates to extract the license plate area. The problem with this method, the processing time is so difficult to handle real-time status of irregular points, and visual contrast with yagangwan border does not appear in the plates to extract the license plate area is that it is not. In addition, the rear of the vehicle license plate area from images taken using the characteristics of the plates myeongamgap changes sutjapok in the area, background area and the number number area of the region confirmed the contrast of the car and identified the number and the number of 42 of distance to extract the license plate area. How to research, the existing damage to the border of the plate to fail to extract the license plate area, a matter of hours to resolve problems in real-time, practical application is processed. Chapter 100 as the results of the experiment the sample video image in a car that far experiment results automatically read license plates have been able to extract the license plate and failing to represent 13% of images, character recognition result of failing to represent the image was 0.4%

  • PDF

A Fast and Robust License Plate Detection Algorithm Based on Two-stage Cascade AdaBoost

  • Sarker, Md. Mostafa Kamal;Yoon, Sook;Park, Dong Sun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.10
    • /
    • pp.3490-3507
    • /
    • 2014
  • License plate detection (LPD) is one of the most important aspects of an automatic license plate recognition system. Although there have been some successful license plate recognition (LPR) methods in past decades, it is still a challenging problem because of the diversity of plate formats and outdoor illumination conditions in image acquisition. Because the accurate detection of license plates under different conditions directly affects overall recognition system accuracy, different methods have been developed for LPD systems. In this paper, we propose a license plate detection method that is rapid and robust against variation, especially variations in illumination conditions. Taking the aspects of accuracy and speed into consideration, the proposed system consists of two stages. For each stage, Haar-like features are used to compute and select features from license plate images and a cascade classifier based on the concatenation of classifiers where each classifier is trained by an AdaBoost algorithm is used to classify parts of an image within a search window as either license plate or non-license plate. And it is followed by connected component analysis (CCA) for eliminating false positives. The two stages use different image preprocessing blocks: image preprocessing without adaptive thresholding for the first stage and image preprocessing with adaptive thresholding for the second stage. The method is faster and more accurate than most existing methods used in LPD. Experimental results demonstrate that the LPD rate is 98.38% and the average computational time is 54.64 ms.

Design of a Recognizing System for Vehicle's License Plates with English Characters

  • Xing, Xiong;Choi, Byung-Jae;Chae, Seog;Lee, Mun-Hee
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.9 no.3
    • /
    • pp.166-171
    • /
    • 2009
  • In recent years, video detection systems have been implemented in various infrastructures such as airport, public transportation, power generation system, water dam and so on. Recognizing moving objects in video sequence is an important problem in computer vision, with applications in several fields, such as video surveillance and target tracking. Segmentation and tracking of multiple vehicles in crowded situations is made difficult by inter-object occlusion. In the system described in this paper, the mean shift algorithm is firstly used to filter and segment a color vehicle image in order to get candidate regions. These candidate regions are then analyzed and classified in order to decide whether a candidate region contains a license plate or not. And then some characters in the license plate is recognized by using the fuzzy ARTMAP neural network, which is a relatively new architecture of the neural network family and has the capability to learn incrementally unlike the conventional BP network. We finally design a license plate recognition system using the mean shift algorithm and fuzzy ARTMAP neural network and show its performance via some computer simulations.

Design of Improved UI of Automatic Parking Management System using License Plate Recognition (번호판 인식을 통한 자동 주차관리 시스템의 개선된 UI 설계)

  • Kim, Bong-Gi
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1083-1088
    • /
    • 2014
  • Recently, due to advances in both imaging technology and ICT, various types of image processing services became available and the application services of these two technologies are diversifying. Recognition of vehicle license plates is used in places where vehicle information is needed such as in parking management. However, existing systems have economic disadvantages like issuing parking tickets and attaching unnecessary equipment. In order to solve these problems, we designed and implemented automatic parking management system through recognition of vehicle license plates by using emguCV that is based on OpenCV. Additionally, we designed improved UI to handle the entire parking management situation which include information such as details of each parking vehicle, parking time and remaining parking spaces without screen movement. This improved UI is implemented with the use of WPF which is the latest technology in user program development. The emguCV used in this paper showed the most optimized performance in Intel based environment. With it, we obtained the result of within 0.5 seconds of recognition processing time and over 90% of recognition rate. Through improved UI, the manager could both simply and intuitively manage the entire system.

Vehicle License Plate Recognition System By Edge-based Segment Image Generation (에지기반 세그먼트 영상 생성에 의한 차량 번호판 인식 시스템)

  • Kim, Jin-Ho;Noh, Duck-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.12 no.3
    • /
    • pp.9-16
    • /
    • 2012
  • The research of vehicle license plate recognition has been widely studied for the smart city project. The license plate recognition can be hard due to the geometric distortion and the image quality degradation in case of capturing the driving car image at CCTV without trigger signal on the road. In this paper, the high performance vehicle license plate recognition system using edge-based segment image is introduced which is robust in the geometric distortion and the image quality degradation according to non-trigger signal. The experimental results of the proposed real time license plate recognition algorithm which is implemented at the CCTV on the road show that the plate detection rate was 97.5% and the overall character recognition rate of the detected plates was 99.3% in a day average 1,535 vehicles for a week operation.

A Study on Recognition of Both of New & Old Types of Vehicle Plate (신, 구 차량 번호판 통합 인식에 관한 연구)

  • Han, Kun-Young;Woo, Young-Woon;Han, Soo-Whan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.10
    • /
    • pp.1987-1996
    • /
    • 2009
  • Recently, the color of vehicle license plate has been changed from green to white. Thus the vehicle plate recognition system used for parking management systems, speed and signal violation detection systems should be robust to the both colors. This paper presents a vehicle license plate recognition system, which works on both of green and white plate at the same time. In the proposed system, the image of license plate is taken from a captured vehicle image by using morphological information. In the next, each character region in the license plate image is extracted based on the vertical and horizontal projection of plate image and the relative position of individual characters. Finally, for the recognition process of extracted characters, PCA(Principal Component Analysis) and LDA(Linear Discriminant Analysis) are sequentially utilized. In the experiment, vehicle license plates of both green background and white background captured under irregular illumination conditions have been tested, and the relatively high extraction and recognition rates are observed.

Isolating vehicle license plate area using the known information (사전정보를 이용한 차량번호판 영역의 분리)

  • 문기주;신영석;최효돈
    • Korean Management Science Review
    • /
    • v.13 no.2
    • /
    • pp.1-11
    • /
    • 1996
  • Two different methods to extract the license plate area of a vehicle have been used for automatic recognition purposes. One method is with a color vision system and the other is with an edge detecting operator. The system with color vision has some problems if the colors of license plate and vehicle's body are similar. The various plate colors in Korea also drops the system performance. The edge detecting operator also has a problem for a real time processing since it performs on all pixels of the scene. In this paper a possible method using gray level vision system and available pre-known information of license plates is suggested. The suggested procedure searches the lower boundary of the plate by counting high contrast points between one and near pixel from the bottom line of the scene. It finds the upper boundary from the bottom line by adding number plate height after finding the lower boundary. The left and right boundaries are found by similar processes.

  • PDF

Detecting Numeric and Character Areas of Low-quality License Plate Images using YOLOv4 Algorithm (YOLOv4 알고리즘을 이용한 저품질 자동차 번호판 영상의 숫자 및 문자영역 검출)

  • Lee, Jeonghwan
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.4
    • /
    • pp.1-11
    • /
    • 2022
  • Recently, research on license plate recognition, which is a core technology of an intelligent transportation system(ITS), is being actively conducted. In this paper, we propose a method to extract numbers and characters from low-quality license plate images by applying the YOLOv4 algorithm. YOLOv4 is a one-stage object detection method using convolution neural network including BACKBONE, NECK, and HEAD parts. It is a method of detecting objects in real time rather than the previous two-stage object detection method such as the faster R-CNN. In this paper, we studied a method to directly extract number and character regions from low-quality license plate images without additional edge detection and image segmentation processes. In order to evaluate the performance of the proposed method we experimented with 500 license plate images. In this experiment, 350 images were used for training and the remaining 150 images were used for the testing process. Computer simulations show that the mean average precision of detecting number and character regions on vehicle license plates was about 93.8%.