• Title/Summary/Keyword: Reclaimed soil

Search Result 576, Processing Time 0.024 seconds

Desalinization Characteristics after Reclamation of Tidal Flat on the Western Coast of Korea (서해안 간척지 토양의 탈염특성)

  • 민병미;김준호
    • The Korean Journal of Ecology
    • /
    • v.20 no.4
    • /
    • pp.275-283
    • /
    • 1997
  • Vertical and temporal characteristics of desalinized reclaimed soil were analyzed from reclaimed coastal land on the western coast of Korea. Of the vertical changes during desalting, pH valuse were the lowest at the topsoil without regard to reclaimation time. The content of C1 were designated as the early period (the first 2-4 years) which decreased exponentially and the later period(the last 5-7 years) which was almost constant, from top to down. In temporal changes of the soil attributes, pH values increased for 5 years and decreased at 6 year after reclamation. Chlorine leaches more rapidly than Na does, K and Ca are constant but Mg increases as time elapsed after reclamation. Sometimes the content of Ca and K in the reclaimed soil are of higher concentration than that of the seawater after reclamation. During desallinization as exemplified by decreasing EC of the soil, Cl and Na are rapidly leached, but K, Ca and Mg are somewhat enhanced. The ration of Na/Cl in the soil equals 1 when the EC registers 5 mmho and then increases dramatically as the EC decreases. Rapid leaching of $Cl^{-}$ elicits an increasing pH valus. The electrostatic balance of the soil is achived by replacement of $Cl^{-}$ with $OH^{-}$ until stationary or until a decreasing pH value is reached again.

  • PDF

Natural Ripening versus Artificial Enhancing of Silty Reclaimed Tidal Soils for Upland Cropping Tested by Profile Characterization

  • Ibrahim, Muhammad;Han, Kyung-Hwa;Lee, Kyung-Do;Youn, Kwan-Hee;Ha, Sang-Keun;Zhang, Yong-Seon;Hur, Seung-Oh;Yoon, Sung-Won;Cho, Hee-Rae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • This study was performed to produce basic data for silty reclaimed tidal lands and to develop techniques of environmentally-friendly utilization in agricultural system. We chose the two sites in Saemangeum reclaimed tidal lands, one (Site I) has been treated with cultivating green manure and conducting the desalinization process through submergence since April, 2007 and the other (Site II) has been under natural condition without artificial treatment. In situ and ex situ physic-chemical properties were determined and comparisons were made for soil profiles examined at these two sites in April 2009. Surface soil of Site I had lower EC and higher field saturated hydraulic conductivity than those of Site II, uncultivated land. Especially, exchangeable sodium content was lowest in Site I Ap1 layer than in other layers. This is probably due to flooding desalination and green manure cultivation. Besides, Ap1 and A2 layers of soil profile in Site I showed brighter soil color and more root observation than those of Site II. This is probably due to green manure cultivation. By the large, for high cash upland crops and intensive agricultural use of silty reclaimed tidal land, site-specific soil ripening such as flooding desalination and green manure cultivation could be useful.

Effects of Mixed Planting of Green Manure Crops Supplemented with Humic Substance on the Biological Soil Health Indicators of Reclaimed Soils (녹비식물 혼합재배에 휴믹물질 투입이 정화처리토양의 생물학적 토양 건강성 지표에 미치는 영향)

  • Bae, Bumhan;Park, Hyesun;Kang, Sua
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.5
    • /
    • pp.49-59
    • /
    • 2021
  • The effects of green manure crops, hairy vetch and sesban, supplemented with HS (humic substance) on biological soil health indicators was studied in a pot containing two kinds of reclaimed soil previously contaminated with petroleum hydrocarbons; a soil remediated by land-farming (DDC) and another soil by low-temperature thermal desorption (YJ). Treatments include no plant (C), plants only (H), and plants+2% HS (PH), which were evaluated in a pot containing respective soil. Biological indicators include microbial community analysis as well as soil enzyme activities of dehydrogenase, 𝛽-glucosidase, N-acetyl-𝛽-D-glucosaminidase (NAG), acid/alkaline phosphatase, arylsulfatase, and urease. Results showed an increase of enzyme activities in pot soils with plants and even greater in soils with plants+HS. The enzyme activities of DDC soil with plants (DDC_P) and with plants+HS (DDC_PH) increased 1.6 and 3.9 times on average, respectively than those in the control. The enzyme activities YJ soil with plants (YJ_P) and with plant+HS (YJ_PH) increased 1.8 and 3.8 times on average, respectively than those in the control. According to microbial community analysis, the relative abundance of nitrogen-fixing bacteria in DDC and YJ soil was increased from 1.5% to 7% and from 0 to 5%, respectively, after planting hairy vetch and sesban. This study showed that mixed planting of green manure crops with a supplement of humic substance is highly effective for the restoration of biological health indicators of reclaimed soils.

Physico-Chemical Properties of Paddy Soil and Actual Farming Conditions in Gyehwa Reclaimed Tidal Land (계화간척지 논토양의 물리화학적 특성 및 영농실태)

  • Yoo, Chul-Hyun;Yang, Chang-Hyu;Kim, Taek-Kyum;Ryu, Jin-Hee;Jung, Ji-Ho;Kang, Seung-Weon;Kim, Jae-Duk;Jung, Kwang-Yung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.2
    • /
    • pp.109-113
    • /
    • 2007
  • In order to establish the fertilization and soil management method in Gyehwa reclaimed tidal land, we investigated soil property and actual farming condition. Soil properties of 100 field paddy soil and farming surveys of 177 farm households were conducted. Average of effective soil depth was 17.8 cm, which was very smaller than the optimum level 50 cm. The hardness and bulk density of subsoil were $12.40kg\;cm^{-2}$ and $1.59g\;cm^{-3}$, respectively. These results showed that soil physical condition of Gyehwa reclaimed tidal land was very poor. Soil salinity ranged from 0.03 to 0.12%, and average of pH was 6.0, which implied that desalinization of Gyehwa reclaimed tidal land was progressed. However, soil nutrients in Gyehwa reclaimed tidal land were very unbalanced conditions as following, available phosphate $58mg\;kg^{-1}$, available silicate $85mg\;kg^{-1}$, cation exchangeable capacity $7.4cmolc\;kg^{-1}$ and organic matter $8.6g\;kg^{-1}$. On the farm household in Gyehwa reclaimed tidal land, fertilization amounts were $200-54-61(N-P_2O_5-K_2O)kg\;ha^{-1}$ They mainly practiced spring tillage(84%) rather than autumn tillage(16%), and only 14% of them applied rice straw annually in the paddy soil.

Biological improvement of reclaimed tidal land soil (II) -Changes of soil-microbial populations in reclaimed tidal land- (해안간척지 토양의 생물학적 토성개량에 관한 연구 (제 2 ) -간척지토양에 있어서 생물의 화에 대하여-)

  • 홍순우;하영칠;이광웅
    • Korean Journal of Microbiology
    • /
    • v.6 no.4
    • /
    • pp.131-140
    • /
    • 1968
  • The soil of the reclaimed tidal land, located in Chogi-ri, Is. Kanghwa, Korea was used in this experiment. The experimented soil samples were collected from 18 sites with its time elapsed after the shore-protection works, soil-depth and the vegetation of saline plants, and at each site samplings were conducted monthly from March through October, 1968, for the purposes of examining the changes of microbial populations for the microbes such as bacteria, actinomycetes and fungi, by using the dilution plate method. The numbers of the microbes in these soils generally showed lower levels comparing with those of other soils. The more time elapsed after the reclamation, the higher numbers of the microbes inhibited the soils. Higher populations were there in the surface soils than in the lower part of the area. The surface soils included comparatively better conditions in aeration and contents of organic matter than in the lower part, and this fact was. same as in general soils. However, not so was this in the case of March, April and October due to the higher soil temperatures in the lows. At the experimental sites where the halophytes such as Salicorniu were grown vigourously, the more densly the plants grew, the higher populations of actinomycetes and fungi were, but not in the case of bacterial population. This means, in this soil with dense Salicornia, it is difficult to obtain good-natured soils in short time without a higher population of bacteria. For the rapid utilization of the land soil, in this view of point, the methods increasing the number of bacteria in the soil are needed as well as the cultivation and harvesting Salicorniu which indicated in the privious paper(Hong, et al., 1969a). According to the results of this experiment, the changes of soil-microbial populations in the reclaimed tidal land soil containing high salinity depend deeply upon the interrelations of many environmental factors such as soil-salinity, soil-components and contents, concentration of organic matters, pH, aeration, and air and soil temperatures, as in the general soils.

  • PDF

Evaluation of Potential Utility of Reclaimed Soil from Remediation Sites (정화토의 순환골재 재활용 가능성 평가)

  • Han, Su Ho;Kim, Jeong Wook;Jeon, Soon Won;Park, Seung Ho;Park, Hyeong Min;Min, Seon Ki;Jung, Myung Chae
    • Journal of Soil and Groundwater Environment
    • /
    • v.26 no.6
    • /
    • pp.27-35
    • /
    • 2021
  • This study examined the possibility of reutilization of soil reclaimed from contaminated sites after completing remediation. The current status of soil remediation methods in Korea was reviewed and physicochemical properties of soil before and after remediation processes were examined to access the recycling possibility of reclaimed soils based on Recycling Aggregate Quality Standard. The most commonly practiced soil remediation techniques are soil washing, land farming, and thermal desorption. These techniques tend to deteriorate various soil properties including electrical conductivity(EC), organic matter content(OM), available P2O5, and cation exchange capacity(CEC). Evaluation of the properties of soil retrieved after each remediation process indicated soil washing may yield the most suitable soil for use as a filling, covering, back-filling, road pavement, and blocking materials, In addition, the soils reclaimed from land farming and thermal desorption have potential utility as a filling, covering and road pavement materials.

Soil Salinity and Continuum Distribution of Vegetation on the Three Reclaimed Tidal Flats of Kyonggi-Bay in the Mid-West Coast of Korea (한국 중부 서해안 경기만 일대 3개 간척지의 토양 염농도와 식생의 연속분포)

  • Kim, Eun-Kyu;Chun, SoUl;Joo, Young-K.;Jung, Yeong-Sang;Jung, Hyeung-Gun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.2
    • /
    • pp.83-93
    • /
    • 2008
  • Assessing for flora distribution is necessary for land management and environmental research in reclaimed lands. This study was conducted to find out the relationship between vegetation distribution and soil salinity on three reclaimed tidal flats of Kyonggi-bay in the mid-west coast of Korea. We investigated the soil salinity and identified the vegetation at the continuum distribution spots, and describe the characteristics of continuum distribution. On the reclaimed tidal flats, spatial variation of vegetation formed partially, however as the result for connection of each spatial variation along with the soil salinity, continuum distribution formed and it was overlapped edaphic gradient with vegetation distribution, it means that the continuum distribution correspond with soil salinity gradient, as the evidence high salt tolerance species occurred at high saline spots, non salt tolerance species occurred at low saline spots. On the aged reclaimed tidal flats, continuum type was various and also clearly distinguished but it was not clear on the early stage of reclamation. The continuum distribution distinguished sequential and non-sequential type. Sequential type started from high saline zone and connected to low saline zone gradually, on this type, vegetation changed from pioneer halophyte to facultative halophyte and glycophyte along with the salinity gradient. Non-sequential type formed by non-sequential change of soil salinity, on this type, vegetation distribution was non-regular form because it has not changed gradually. In the aged reclaimed land, vegetation wilted zone existed with high salinity, and continuum distribution started from this zone with bare patch.

Analysis of Traction Performance for Agricultural Tractor According to Soil Condition (토양 조건에 따른 농업용 트랙터의 견인 성능 분석)

  • Lee, Nam Gyu;Kim, Yong Joo;Baek, Seung Min;Moon, Seok Pyo;Park, Seong Un;Choi, Young Soo;Choi, Chang Hyun
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.133-140
    • /
    • 2020
  • Traction performance of a tractor varies depending on soil conditions. Sinkage and slip of the driving wheel for tractor frequently occur in a reclaimed land. The objective of this study was to develop a tractor suitable for a reclaimed land. Traction performance was evaluated according to soil conditions of reclaimed land and paddy field. Field experiments were conducted at two test sites (Fields A: paddy field; and Field B: reclaimed land). The tractor load measurement system was composed of an axle rotation speed sensor, a torque meter, a six-component load cell, GPS, and a DAQ (Data Acquisition System). Soil properties including soil texture, water content, cone index, and electrical conductivity (EC) were measured. Referring to previous researches, the tractor traveling speed was set to B3 (7.05 km/h), which was frequently used in ridge plow tillage. Soil moisture contents were 33.2% and 48.6% in fields A and B, respectively. Cone index was 2.1 times higher in field A than in field B. When working in the reclaimed land, slip ratios were about 10.5% and 33.1% for fields A and B, respectively. The engine load was used almost 100% of all tractors under the two field conditions. Traction powers were 31.9 kW and 24.2 kW for fields A and B, respectively. Tractive efficiencies were 83.3% and 54.4% for fields A and B, respectively. As soil moisture increased by 16.4%, the tractive efficiency was lowered by about 28.9%. Traction performance of tractor was significantly different according to soil conditions of fields A and B. Therefore, it is necessary to improve the traction performance of tractor for smooth operations in all soil conditions including a reclaimed land by reflecting data of this study.

Evaluation of Salt-Tolerance Plant for Improving Saline Soil of Reclaimed Land (간척지 토양개량을 위한 내염성 식물의 활용성 평가)

  • Lee, Kyeong-Bo;Kang, Jong-Gook;Li, Jumei;Lee, Deog-Bae;Park, Chan-Won;Kim, Jae-Duk
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.3
    • /
    • pp.173-180
    • /
    • 2007
  • Reclaimed tidal area is a great agricultural resource in the world. Improvement and utilization of reclaimed soil is an important measure for expanding land resource. This study was conducted to evaluate relative salt-tolerance of plants and its effect for improving saline soil. Eighteen tolerance plants were selected from China, Pakistan and Korea the climate of which is different. The emergence of different varieties in reclaimed soil was in order as FL478>Barnyard grass>Pokkali>Atriplex>Sesbania>Rumex>Alfalfa>Tall Fescue>Ryegrass>Sudan grass. Four varieties, Barnyard grass, Sesbania, Atriplex and Limonium were selected for soil improvement in reclaimed land. Cultivation of Sesbania, Barnyard grass and Atriplex were good to soil physico-chemical quality. Also these plants increased soil organic matter contents and reduced soil salt concentration. Organic matter contents of cultivated soils of Sesbania, Barnyard grass and Atriplex were $4.10g\;kg^{-1}$, $4.60g\;kg^{-1}$ and $2.81g\;kg^{-1}$ respectively. On the other hand organic matter content of uncultivated soils was $2.65g\;kg^{-1}$. As Sesbania and Barnyard grass were applied to cultivated soil like green manure, bulk density improved from $1.42Mg\;m^{-3}$ to $1.39Mg\;m^{-3}$.

Salinity affects microbial community structure in saemangeum reclaimed land

  • Kim, Kiyoon;Samaddar, Sandipan;Ahmed, Shamim;Roy, Choudhury Aritra;Sa, Tongmin
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.364-364
    • /
    • 2017
  • Saemangeum reclaimed land is a part of Saemangeum Development Project. Most of the persistent problems of Saemangeum reclaimed land remain to be related to soil salinity. Soil salinity is a major abiotic factor related to microbial community structure and also fungi have been reported to be more sensitive to salinity stress than bacteria. The aim of this study was conducted to investigate the effect of soil salinity levels on the microbial communities in Saemangeum reclaimed land using 454 pyrosequencing analysis. Soil samples was collected from 12 sites of in Saemangeum reclaimed land. For pyrosequencing, 27F/518R (bacteria) and ITS3/ITS4 (fungi) primers were used containing the Roche 454 pyrosequencing adaptor-key-linker (underlined) and unique barcodes (X). Pyrosequencing was performed by Chun's Lab (Seoul, Korea) using the standard shotgun sequencing reagents and a 454 GS FLX Titanium sequencing System (Roche, Inc.). In the soil samples, Proteobacteria (bacteria) and Ascomycota (fungi) shows the highest relative abundance in all the soil sample sites. Proteobacteria, Bacteroidetes, Plantomycetes, Gemmatimonadetes and Parcubacteria were shown to have significantly higher abundance in high salinity level soils than low salinity level soils, while Acidobacteria and Nitrospirae has significantly higher relative abundance in low salinity level soils. The abundance of fungal, Ascomycota has the highest relative abundance in soil samples, followed by Basidiomycota, Chlorophyta, Zygomycota and Chytridiomycota. Basidiomycota, Zygomycota, Glomeromycota and Cerozoa were show significantly higher relative abundance in low salinity level soils. The principal coordinate analysis (PCoA) and correlation analysis shown to salinity-related soil parameters such as ECe, Na+, SAR and EPS were affected to bacterial and fungal community structure. Proteobacteria, Bacteroidetes, Plantomycetes exhibited significantly positive correlation with soil salinity, while Acidobacteria exhibited significantly negative correlation. In the case of fungal community, Basidiomycota and Zygomycota were seen show significantly negative correlation with salinity related soil parameters. These results suggest that provide understanding effect of soil salinity on microbial community structure and correlation of microbial community with soil parameters in Saemangeum reclaimed land.

  • PDF