• Title/Summary/Keyword: Reclaimed soil

Search Result 576, Processing Time 0.022 seconds

Development of salt-tolerant transgenic chrysanthemum (Dendranthema grandiflorum) lines and bio-assay with a change of cell specificity (내염성 국화 형질전환 계통 육성 및 저항성 검정과 세포특성 변화)

  • Kang, Chan-Ho;Yun, Seung-Jung;Han, Bum-So;Lee, Gong-Joon;Choi, Kyu-Hwan;Park, Jong-Suk;Shin, Yong-Kyu
    • Journal of Plant Biotechnology
    • /
    • v.38 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Recently the increasing of vinyl and green houses and development of reclaimed land including Saemangeum induced the need for breeding salt-tolerant crops which can survive and grow in high salinity soil. So we try to develop salt-tolerant transgenic chrysanthemum (Dendranthema grandiflorum.) lines by using anti-porter gene TANHX and HVNHX. Through marker selection and plant regeneration step, we could get 284 putative transgenic chrysanthemum lines. On selected putative transgenic plants, 40 candidates were used for genetic analysis and 30 lines could be made up of target size band on PCR, so about 75% of marker selected lines were decided as real transgenic lines. Selected 284 transgenic lines were also used for salt-tolerance test as a range of NaCl 0.2 ~ 1.2% (300 mM). As a result of salt-tolerance test, 15 selected transgenic lines could live and grow on the continuous supply of 0.8% (200 mM) NaCl solution and another 7 lines were could survive under 1.2% (300 mM) NaCl solution. This salt-tolerant transgenic lines under salt stress also lead a cell alternation especially a guard cell. A stressed guard cell be swelled and grow larger in proportion to NaCl concentration. TTC test for cell viability on transgenic chrysanthemum lines pointed out that more strong salt-tolerant lines can be live more than another under same salt stress. The numerical value of strong salt-tolerant 7 transgenic lines were 0.206 ~ 0.331 under 1.2% NaCl stress, and then it's value is more larger than middle salinity lines' 0.114 ~ 0.193 and non-transgenic's 0.046. And the proline contents as indicated stress compound also pointed out that HVNHX introduced salt-tolerant transgenic lines were less stressed than other under same salt stress. The contents of strong salt-tolerant transgenic lines were 2.255 ~ 2.638 mg/kg and it is much higher than that of middle salinity lines' 1.496 ~ 2.125.

Bakanae Disease Reduction Effect by Use of Silicate Coated Seed in Wet Direct-Seeded Rice (규산코팅 벼 종자를 이용한 담수직파재배 시 벼 키다리병 경감효과)

  • Kang, Yang-Soon;Kim, Wan Joong;Kim, Yeon Ju;Jung, Ki-Hong;Choi, Ul-Su
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.61 no.1
    • /
    • pp.9-16
    • /
    • 2016
  • To investigate the effect of soluble silicate zeolite dressing of the rice against bakanae disease, field trial in reclaimed land and in vitro were carried out. The coated rice seeds (SCS) which were dressed with the mixture of 25% silicic acids (binder), and the zeolite (coating powder). In wet direct seeding, uniform scattering of rice seeds on the soil surface and the better seedling establishment were shown in SCS treatment plots. The incidence of bakanae disease began from the mid tillering stage toward the heading stage. Around heading stage, the ratio of infected tillers reached its highest point by 9.9% in non-SCS treatment plots. While, in SCS treatment plots, the ratio of infected tillers was no more than 0.01%. The vitality of the pathogenic fungi of bakanae disease in the SCS and non-SCS samples were assessed. Samples were incubated for one week keeping proper humidity at $30^{\circ}C$ after inoculated with panicles of infected rice plants from experimental field plots. In non-SCS treatment, pinkish colonies were formed on the grain surface of panicle of infected plants, and mycelium, macro-conidia and micro-conidia were developed actively inside part of infected grain inoculated. While in SCS treatment, micro-conidia and mycelium were not survived and the growth of macro-conidia, mycelia were greatly inhibited and withered. Based on the results, it is concluded that the environmental friendly control of bakanae disease by use of SCS is possible and soluble silicate can be applied as agents for replacement of seed disinfection.

Fresh-water Algae Occurred in Paddy Rice Fields I. Regional Distribution (논발생(發生) 담수조류(淡水藻類)에 관(關)한 연구(硏究) I. 지대별(地帶別) 발생분포(發生分布))

  • Lee, H.K.;Park, J.E.;Ryu, G.H.;Lee, J.O.;Park, Y.S.
    • Korean Journal of Weed Science
    • /
    • v.12 no.2
    • /
    • pp.158-165
    • /
    • 1992
  • A survey on nation-wide distribution of fresh-water algae occurring in paddy rice fields was conducted in 1991. The algae which were collected from the whole nation were classified into a total of 54 genera including 14 genera in the blue-green algae. 29 genera in the green algae, 1 genus in the stoneworts. 3 genera in the euglenoids and 7 genera in the diatoms. The green algae and diatoms occurring in plain regions were diverse in terms of the number of genera distributed, whereas there was no regional difference in diversity of the blue-green algae and the euglenoids. Among the green algae, the suspended unicellular algae such as the genera, Chlamydomonas, Pandorina and Gonium, were widespread in plain regions, but the multicellular algae such as the genera, Spirogyra, Oedogonium, Ulothrix and Hydordictyon, were major in mountainous and attitudinal regions. The filamentous green algae such as the genera. Cladophora and Rhizoclonium, were dominant in reclaimed saline fields. The blue-green algae Oscillatoria spp. and the diatoms Navicula spp. were abundant in soil flakes.

  • PDF

Evaluations of Growth and Forage Quality of Sesbania Accessions Adaptable to Korean Environments (국내적응 세스바니아의 생육특성 및 사료가치 평가)

  • Lee, Chang Min;Kim, Young Jin;Ahn, Sol;Hailegioris, Daniel;Lee, Cheong Ae;Yun, Song-Joong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.3
    • /
    • pp.278-286
    • /
    • 2019
  • Sesbania, an annual herb, is known for its high forage value and salt tolerance. It has merits as a forage crop that is adaptable to reclaimed land in the Republic of Korea. Therefore, we collected Sesbania genetic resources from the Republic of Korea and other countries, and conducted experiments to evaluate their potential as a forage crop in Korean climate and soil conditions. In the preliminary experiments, 15 genetic resources which were able to set seeds in Korean environment were selected out of a total of 46 collected genetic resources. Among 15 genetic resources, SL13 was the tallest and it was followed by that of SC04, SR01 and SE07. The accessions with the earliest flowering started flowering 101 days after sowing and set seed in early August. Fifteen accessions were evaluated for their salt tolerance at germination stage based on germination rate and growth of germinated seedlings at 0 mM, 150 mM and 300 mM NaCl concentrations. Five genetic resources like SC04, SL13, SS20, SS24 and SR01 were selected to be tolerant to NaCl treatment. Forage value was evaluated based on crude protein, acid detergent fiber, neutral detergent fiber and in vitro dry matter digestibility. The forage value of leaves was significantly higher than that of stems, and the forage value of the stem was slightly better than that of rice straw. The forage value of leaves of all the genetic resources was higher than grade 1 by the American Forage and Grassland Council grade. Among five selected genetic resources, the relative feed value of SC04 was the highest and it was followed by that of SS20, SL13, SS24 and SR01.

A Study on Transition of Rice Culture Practices During Chosun Dynasty Through Old References IX. Intergrated Discussion on Rice (주요(主要) 고농서(古農書)를 통(通)한 조선시대(朝鮮時代)의 도작기술(稻作技術) 전개(展開) 과정(過程) 연구(硏究) - IX. 도작기술(稻作技術)에 대(對)한 종합고찰(綜合考察))

  • Guh, J.O.;Lee, S.K.;Lee, E.W.;Lee, H.S.
    • Korean Journal of Weed Science
    • /
    • v.12 no.1
    • /
    • pp.70-79
    • /
    • 1992
  • From the beginning of the chosun dynasty, an agriculture-first policy was imposed by being written farming books, for instance, Nongsajiksul, matched with real conditions of local agriculture, which provided the grounds of new, intensive farming technologies. This farming book was the collection of good fanning technologies that were experienced in rural farm areas at that time. According to Nongsajiksul, rice culture systems were divided into "Musarmi"(Water-Seeded rice), /"Kunsarmi"(dry-seeded rice), /transplanted rice and mountainous rice (upland rice) culture. The characteristics of these rice cultures with high technologies were based of scientific weeding methods, improved fertilization, and cultivation works using cattle power and manpower tools systematically. Reclamation of coastal swampy and barren land was possible in virtue of fire cultivation farming(火耕) and a weeding tool called "Yoonmok"(輪木). Also, there was an improved hoe to do weeding works as well as thinning and heaping-up of soil at seeding stages of rice. Direct-seeded rice culture in flat paddy fields were expanded by constructing the irrigation reservoirs and ponds, and the valley paddy fields was reclaimed by constructing "Boh(洑)". These were possible due to weed control by irrigation waters, keeping soil fertility by inorganic fertilization during irrigation, and increased productivity of rice fields by supplying good physiological conditions for rice. Also, labor-saving culture of rice was feasible by transplanting but in national-wide, rice should not basically be transplanted because of the restriction of water use. Thus, direct-seeded rice in dry soils was established, in which rice was direct-seeded and grown in dry soils by seedling stages and was grown in flooded fields when rained, as in the book "Nongsajiksul". During the middle of the dynasty(AD 1495-1725), the excellent labor-saving farmings include check-rowing transplanting because of weeding efficiency and availability in rice("Hanjongrok"), and, nurserybed techniques (early transplanting of rice) were emphasized on the basis of rice transplanting ["Nongajibsung"]. The techniques for deep plowing with cattle powers and for putting more fertilizers were to improve the productivity of labor and land, The matters advanced in "Sanlimkyungje" more than in "Nongajibsung" were, development of "drybed of rice nursery stock", like "upland rice nursery" today, transplanting, establishment of "winter barly on drained paddy field, and improvement of labor and land-productivity in rice". This resulted in the community of large-scale farming by changing the pattern of small-farming into the production system of rice management. Woo-hayoung(1741-1812) in his book "Chonilrok" tried to reform from large-scale farmings into intensive farmings, of which as eminent view was to divide the land use into transplanting (paddy) and groove-seeding methods(dry field). Especially as insisted by Seo-yugo ("Sanlimkyungjeji"), the advantages of transplanting were curtailment of weeding labors, good growth of rice because of soil fertility of both nurserybed and paddy field, and newly active growth because rice plants were pulled out and replanted. Of course, there were reestimation of transplanting, limitation of two croppings a year, restriction of "paddy-upland alternation", and a ban for large-scale farming. At that period, Lee-jiyum had written on rice farming technologies in dry upland with consider of the land, water physiology of rice, and convenience for weeding, and it was a creative cropping system to secure the farm income most safely. As a integrated considerations, the followings must be introduced to practice the improved farming methods ; namely, improvement of farming tools, putting more fertilizers, introduction of cultural technologies more rational and efficient, management of labor power, improvement of cropping system to enhance use of irrigation water and land, introduction of new crops and new varieties.

  • PDF

Situation of Fertilizer Industry in Korea (비료산업(肥料産業)의 현황(現況)과 문제점(問題点))

  • Lee, Yun Hwan
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.15 no.1
    • /
    • pp.34-48
    • /
    • 1982
  • 1. Production and consumption of chemical fertilizers in Korea could be divided into five different phases of total imports, setting up fertilizer plants, self-sufficiency in production, net export, and diversification in compound fertilizers. Currently the nation has production capacity of 800 thousand M/T of nitrogen, 400 thousand M/T of phosphate ($P_2O_5$) and 200 thousand M/T of potash ($K_2O$). 2. Yearly consumption increased every year, since 1964, 28,000 M/T N, 7,700 M/T $P_2O_5$, and 7,500 M/T $K_2O$ until 1972, when the increase jumped by eight times for $P_2O_5$ and seven times for $K_2O$ for the following 3 years in anticipation of their short supply. Now total consumption has been more or less stabilized at the level of 450 thousand M/T N, 220 thousand M/T $P_2O_5$ and 180 thousand M/T $K_2O$ for the last 7 years. 3. Current operation rate of fertilizer plants is around 80% throughout the whole industry, after going through several different levels depending on demand at times. 4. Fertilizer export started in 1967 and reached a peak of 150 thousand nutrient ton in 1972, about 20% of total production, before temporarily stopping due to over-demand for next three years. The export resumed again in 1976 rise to the all time high of 670 thousand nutrient ton in 1980, almost half of total production, and then started to decline due to higher price of petroleum since then. 5. The decline in fertilizer export appears to be accelerated because several countries, in South-Eastern Asia, traditional export market for Korean fertilizers, started to build their own plants, since 1980, based on their raw materials of especially petroleum. 6. Current consumption in Korea is about 30 nutrient Kg per 10a, equivalent to that in Western European countries, partly due to new high-yielding rice varieties and extensive cultivation of fruit trees and vegetables. Additional fertilizer demand in future can be anticipated in reclaimed land for growing grass and forestry.

  • PDF