• 제목/요약/키워드: Recirculation air

검색결과 364건 처리시간 0.029초

데이터센터의 공조효율 향상을 위한 공조파티션시스템 성능평가에 관한 연구 (Evaluation of Aisle Partition System's Thermal Performance in Large Data Centers for Superior Cooling Efficiency)

  • 조진균;정차수;김병선
    • 설비공학논문집
    • /
    • 제22권4호
    • /
    • pp.205-212
    • /
    • 2010
  • In a typical data center, large numbers of IT sever racks are arranged multiple rows. IT environments, in which extensive electronic hardware is air-cooled, cooling system inefficiencies result when heated exhaust air from equipment prematurely mixes with chilled coolant air before it is used for cooling. Mixing of chilled air before its use with heated exhaust air results in significant cooling inefficiencies in many systems. Over temperatures may not only harm expensive electronic equipment but also interrupt critical and revenue generating services. Cool shield is a cost effective aisle partition system to contain the air in cold aisles and hot aisles of an IT server room. This paper focuses on the use of performance metrics for analyzing aisle partition system in data centers.

QFT 기법을 이용한 승용디젤엔진 공연비 제어 알고리즘 설계 연구 (Robust Air-to-fuel Ratio Control Algorithm of Passenger Car Diesel Engines Using Quantitative Feedback Theory)

  • 박인석;홍승우;신재욱;선우명호
    • 한국자동차공학회논문집
    • /
    • 제21권3호
    • /
    • pp.88-97
    • /
    • 2013
  • This paper presents a robust air-to-fuel ratio (AFR) control algorithm for managing exhaust gas recirculation (EGR) systems. In order to handle production tolerance, deterioration and parameter-varying characteristics of the EGR system, quantitative feedback theory (QFT) is applied for designing the robust AFR control algorithm. A plant model of EGR system is approximated by the first order transfer function plus time-delay (FOPTD) model. EGR valve position and AFR of exhaust gas are used as input/output variables of the plant model. Through engine experiments, parameter uncertainty of the plant model is identified in a fixed engine operating point. Requirement specifications of robust stability and reference tracking performance are defined and these are fulfilled by the following steps: during loop shaping process, a PID controller is designed by using a nominal loop transmission function represented on Nichols chart. Then, the frequency response of closed-loop transfer function is used for designing a prefilter. It is validated that the proposed QFT-based AFR control algorithm successfully satisfy the requirements through experiments of various engine operating points.

큐벡시 스토커 소각로 2차원 비반응 유동장 수치해석 (A Numerical Study of the 2-D Cold Flow for a Qubec City Stoker Incinerator)

  • 박지영;송은영;장동순
    • 에너지공학
    • /
    • 제2권3호
    • /
    • pp.268-275
    • /
    • 1993
  • 수치해석 방법에 의해 큐백시의 스토커 소각로 유동장을 분석하였다. 수치모사의 변수는 큐백시의 스토커 소각로를 중심으로 한 5가지 내부 형상, 1차공기 속도, 2차공기 속도 및 주입각, 출구면적을 고려하였다. 검사체적에 기초한 Patankar의 유한차분 방법을 사용한 본 논문에서는 power-law scheme과 SIMPLEC 알고리즘을 사용했으며 난류 유동은 표준 k-e 모델을 이용했다. 소각로 유동장 분석을 위해서 재순환 영역의 크기, 난류 점성계수 및 이차공기의 질량분율 분포, 압력강하를 계산했다. 계산 결과는 물리적 의미에 잘 맞게 나타났으며, 큐백시의 스토커 소각로가 다른 내부 형상의 소각로에 비해 상부에 강한 난류를 가진 재순환 영역을 형성하였다.

  • PDF

논문 : Two Color PIV 기법을 이용한 램제트엔진 연소기 특성에 대한 연구 (Papers : A Study on the Characteristics of the Ramjet Engine Combustor using a Two Color PIV Technique)

  • 안규복;윤영빈;정인석;허환일
    • 한국항공우주학회지
    • /
    • 제30권1호
    • /
    • pp.95-104
    • /
    • 2002
  • 램제트 연소기내의 복잡한 고속 유동의 가시화를 위해 two color PIV 기법을 개발하였다. Two color PIV 기법은 두 레이저 빔 사이의 시간 간격을 ㎲ 단위 이하로 조절할 수 있어 고속 유동에의 적용이 가능할 뿐 아니라, 기록된 필름에서의 색분리를 통하여 방향성의 분제를 해결할 수 있으며, 거의 완벽한 cross-correlation이 가능하여 signal-to-noise ratio가 상당히 증가한다는 장점을 갖게 된다. 본 연구에서는 램제트 엔진에 대한 기초 연구로서 양쪽 대칭의 공기 흡입구를 갖는 2차원 형태의 램제트 엔진 연소기를 제작하였고, two color PIV 기법을 이용하여 실험을 수행하였다. 흡입공기의 연소실내 유입각도와 연소시내 도움 위치에 따른 연소실 형상을 바꾸어가며 재순환 영역과 유입공기의 혼합과 같은 유동 특성을 분석하였다. 유입각도는 전체 유동장 뿐 아니라 재순환 영역의 크기와 재순환 영역내의 공기질량비에 상당한 영향을 끼치나, 도움 높이는 재순환 영역에 큰 영향을 주지 않는다는 것을 알 수 있었다.

냉각탑 백연방지의 성능 향상에 관한 실험적 연구 (An Experimental Study on the Cooling Tower of Plume Prevention and Performance Improvements)

  • 정순영;이병천;김성
    • 한국수소및신에너지학회논문집
    • /
    • 제30권6호
    • /
    • pp.578-584
    • /
    • 2019
  • The occurrence of white plume in the cooling tower is phenomenon that the steam in the air through the cooling tower fan is condensed again by the cold ambient air to become saturated moist air. Accordingly, this can cause many problems like spoiling landscape around the cooling tower, odor of ambient air, falling accident by frozenness in the winter, and traffic accident, etc. This study was to install the heat exchanger in the inside of the cooling tower in order to prevent the white plume phenomenon in the cooling tower without affecting the performance of cooling tower. In addition, this study was to discharge the part of cooling water into the atmosphere through the recirculation of heat exchanger after creating dry air by heating the saturated moist air to the dew point temperature. At that time, this study was to conduct the experimental study in order to secure the optimal design data to prevent the white plume in the cooling tower because it checked the dry·moist temperature and relative humidity in the inside·outside of cooling tower on the moist air, and evaluated the performance of the heat exchanger.

에어튜브의 직경비에 따른 건타입 버너의 출구 유동특성에 관한 연구 (A Study on the Exhaust Flow Characteristics of the Gun Type Burner according to the Ratio of Airtube Diameter)

  • 고동국;윤석주
    • 한국분무공학회지
    • /
    • 제20권2호
    • /
    • pp.76-81
    • /
    • 2015
  • Swirl flow has an impact on the stabilization of the flame by the recirculation flow, improvement of the combustion efficiency. The swirl flow in the gun type burner is created by the spinner which is inside the airtube that guide the combustion air. Burner has generally the combustion device composed electronic spark plug, injection nozzle, combustion device adaptor, and spinner. These inner components change the air flow behavior passing through airtube. So, this study analyzed exhaust flow characteristics of the gun type burner according to the ratio of airtube diameter. Turbulence characteristics by the spinner was mean velocity, turbulence intensity, kinetic energy, shear stress and flattness factor of the air flow of axial direction and tangential direction from the exit of the airtube.

HCCI디젤엔진의 연소 및 배기 특성에 미치는 예혼합 연료와 EGR의 영향 (Effects of Premixed Fuel and EGR on the Combustion and Emissions Characteristics of HCCI Diesel Engine)

  • 윤영훈;김대식;이창식
    • 대한기계학회논문집B
    • /
    • 제29권9호
    • /
    • pp.1006-1012
    • /
    • 2005
  • The effects of premixed fuels(diesel or n-heptane) and exhaust gas recirculation on combustion and exhaust emission characteristics in a DI diesel engine were experimentally investigated. To improve homogeneity of fuel-air mixture in the conventional diesel engine, the premixed fuel is injected by high pressure(5.5 MPa) into the premixing chamber prior to engine cylinder, And several additional systems such as an EGR system, air heating system and back pressure control system were equipped in the DI diesel engine. The results showed that premixed fuel-air mixture undergoes typical HCCI combustion prior to the combustion of DI diesel fuel. The ignition timing of HCCI combustion is delayed by application of EGR, and it also shows that HCCI combustion can be controlled by an EGR.

하이브리드 자동차의 EGR 밸브 오작동 시 엔진 성능에 미치는 영향 (A study on engine performance of EGR valve problem in Hybrid vehicles)

  • 송락현;조행묵
    • 에너지공학
    • /
    • 제24권3호
    • /
    • pp.34-39
    • /
    • 2015
  • Recently, Air pollution is gradually increasing which are coming from the exhaust of the ICE vehicles in the world. ICE vehicle exhaust gas and $CO_2$ are widely suspected of contributing to the called greenhouse effect, fueling fears of global warming. Therefore, many countries are striving to decrease the vehicle exhaust gas and have developed a variety of policies as air pollution regulation plans. To comply with the regulations, automotive industry has developed hybrid vehicles, which have features of both ICE vehicles and electric vehicles. Hybrid car is eco-friendly and has lowered exhausting gases and improved fuel efficiency. This research has been written to show that break down cases with EGR valve in hybrid cars, steadily increasing in use, and to help with on-site maintenance.

초음속 공기장에서 Bluff-Body를 이용한 안정화염의 특성과 구조 (The Characteristic Modes and Structures of Bluff-Body Stabilized Flames in Supersonic Coflow Air)

  • 김지호;윤영빈
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2002년도 제24회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.147-153
    • /
    • 2002
  • Experimental investigations are performed on the stability and the structure of bluff-body stabilized hydrogen flames. The velocities of coflow air are varied from subsonic to supersonic velocity of Mach 1.8 and OH PLIF images and Schilieren images are used for analysis. Three characteristic flame modes are classified into three regimes with the variation of fuel-air velocity ratio; a jet like flame, a central-jet dominated flame and a recirculation zone flame. Stability curves are drawn to find the blowout regimes and to show that flame stability is improved by increasing the lip thickness of fuel nozzle that works as bluff-body. $Damk{\ddot{o}hler$ number is adopted in order to scale the blowout curves of each flame obtained at different sizes of the bluff-body and all blowout curves are scaled successfully regardless of its bluff-body size.

  • PDF

장방형 공간내 난류유동및 오염물질 거동의 수치해석 (A Numerical Analysis of Turbulent Flow Field and Contamination Particles Movements in Rectangular Chambers)

  • 심우섭;송기천;황태연;신영철
    • 설비공학논문집
    • /
    • 제3권5호
    • /
    • pp.350-364
    • /
    • 1991
  • The movements of small particles distributed uniformly in a steady flow in rectangular chambers having inlets and outlets were simulated numerically. Low Reynolds number turbulent model with a two-equation ($k-{\varepsilon}$) which describes the turbulent characteristics was applied to predict the air flow pattern and particles movements under the condition of the various locations and size of ducts. The calculation results show that the prediction of recirculation zone and stagnation point of flow is important to determine the particles behavior according to the design change. These results will be useful in designing the rectangular chambers for collective protection.

  • PDF