• 제목/요약/키워드: Reciprocating pump

검색결과 38건 처리시간 0.019초

왕복동 압축기 오일 급유 특성 분석 (Analysis of Oil Supply Characteristics for Reciprocating Compressor)

  • 이병영;고한서;류기오;윤영;박성우
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2006년 제4회 한국유체공학학술대회 논문집
    • /
    • pp.545-546
    • /
    • 2006
  • A problem of oil supply for a reciprocating compressor is very significant for an evaluation of reliability. Since a rotational motion of a crank shaft for the reciprocating compressor with small capacity is used for a power source of oil supply, a centrifugal force of the rotational shaft provides a stroke of oil inside the shaft like a centrifugal pump. The pumped oil rises following an inner wall and provided to a bearing passed through an oil supply hole at the side of the shaft for lubrication of the bearing. In this study, the amount of oil supply has been investigated by a numerical analysis for various conditions such as a shape of a groove, rpm of the compressor, and a shape of a flow channel. Also, a method of increasing oil supply for a low rpm has been studied so that the function can be improved for a variable condition.

  • PDF

유압 피스톤 펌프의 피스톤과 실린더 사이의 윤활해석 (제2보 : 피스톤의 왕복운동에 의한 영향) (A Lubrication Analysis between the Piston and Cylinder in Hydraulic Piston Pumps Part II : The Effect of Piston Reciprocating Motion)

  • 박태조
    • Tribology and Lubricants
    • /
    • 제17권6호
    • /
    • pp.435-440
    • /
    • 2001
  • A numerical analysis between the piston and cylinder in hydraulic piston pumps under reciprocating motion is presented. A finite difference method and the Newton-Raphson method are used simultaneously to solve the Reynolds equation in the clearance and the equation of motion for the piston. The tapered piston showed stable behaviors regardless of their initial eccentric positions in the clearance, and the reciprocating speed affect highly on the piston end trajectories. Therefore, the numerical methods and results of present study can be used in the lubrication study of other piston-cylinder type fluid machineries.

왕복동식 압축기의 방사소음 저감 (Reduction of Radiated Noise in a Reciprocating Compressor)

  • 김용태;이진우;주재만
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.431-434
    • /
    • 2005
  • Generally, noise in a reciprocating compressor is attributed to the driving force of a pump. However, close examination shows that the noise heard by customers finally results from radiation of a shell in a compressor, the noise caused by both transmission through a shell and resonance with the natural frequency of a shell. Therefore, the peak frequencies contributing to the overall level of a compressor' noise are closely concerned with vibration of a shell. That's why radiated noise by vibration can be reduced by changing the mode of a shell and by shifting the peak frequencies to other ranges, which are not globally related with the overall noise level. In this paper, the main peak frequencies are analyzed to reduce the radiated noise of a shell, and the vibration characteristics of a shell are examined through Frequency Response Function and Finite Element Analysis. Moreover, the Operational Deflection Shape for a shell is measured with consideration of real driving force of a pump. Finally, the optimum position on a shell, closely related to the main peak frequencies, is found, and the overall noise level caused by radiated noise of a shell is noticeably reduced by mass or stiffness modification of the position.

  • PDF

극저온용 액중펌프 구조해석에 관한 연구 (A Study on the Structural Analysis of Cryogenic Submerged Pump)

  • 진도훈;이중섭
    • 한국산업융합학회 논문집
    • /
    • 제23권5호
    • /
    • pp.727-733
    • /
    • 2020
  • Recently, reciprocating cryogenic pumps are mainly developed for small-and-mid sized fuel supply systems. Centrifugal type pumps are not actively developed. Most cryogenic submerged pumps are imported. For transportation, cryogenic liquefied natural gas requires the liquid pump technology that can works in extreme evironments. In order to transport liquefied natural gas, it is necessary to apply pump technology. This is the fundamental research for developing the submerged pump technology applicable to the transportation and storage system equipment of cryogenic liquefied system. It tries to secure basic design materials through reverse-engineering in the cryogenic submerged pump development. Regarding materials, STS-304 and STS-431 which are stainless materials widely used in the cryogenic area are applied. Aluminum alloy is applied to impeller and upper manifolder and the pump rotates at the high speed of 6,000rpm.

등속조인트를 적용한 사판식 유압 모터/점프의 로드형 피스톤에 대한 운동해석 (A Kinematic Analysis on Piston Rod Mechanism in Swashplate Type Hydraulic Axial Piston Motor/Pump Using Constant Velocity Joint)

  • 김경호;김성동;함영복;이재천
    • 유공압시스템학회논문집
    • /
    • 제2권1호
    • /
    • pp.1-8
    • /
    • 2005
  • Recently, swash plate type hydraulic axial piston motors/pumps are being extensively used in the world, because of simple design, light weight and effective cost. Structural problem of the swash plate type motor/pump is that tilting angle of swash plate should be limited to relatively small value and lateral farce on pistons has an undesirable effect in reciprocating motion. To solve these problems, piston rod mechanism, which is commonly used in bent axis type motor/pump, is considered to be applied to the swash plate type motor/pump. In this paper, kinematic analysis was done on the piston rod mechanism. A series of formula were derived and numerical calculations were done for a set of motor parameters.

  • PDF

항공기용 유압 펌프 부품의 동적특성 및 유한 요소 분석 (FEM Analysis and Dynamic Characteristics of Hydraulic Pump Assembly Components for Aircraft)

  • 김형의;한성건
    • 동력기계공학회지
    • /
    • 제16권1호
    • /
    • pp.5-11
    • /
    • 2012
  • In this paper, the numerical analysis is introduced to predict the dynamic characteristics of piston pump assembly components in hydraulic piston pump for aircraft. Rotating cylinder block and reciprocating pistons are modelled kinematically. Furthermore, leakage flow and torque losses between the boundary surfaces of components are analyzed. This analysis has been carried out through the commercial CASPAR program. The simulations for stress on pump assembly components using the dynamic analysis model are performed using the ANSYS 11 program. Such dynamic characteristics and stress simulation procedures will be carried out repeatedly for the optimized design.

Importance Of Tribology in Positive-Displacement Type of Fluid Machinery and Heat Engine

  • Nakahara, Tsunamitsu
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1998년도 제28회 추계학술대회
    • /
    • pp.3-8
    • /
    • 1998
  • The industrial revolution in England was based on the manufacturing systems by the power of water mill and rapidly progressed by the innovation of steam engine. It is no exaggeration to say that today's civilization is realized by the development of various types of power machinery, namely fluid machinery and heat engine. The electric energy is converted mainly from thermal energy (mainly steam) of mineral oil, coal and nuclear fuel through generator connected with steam turbine which is a kind of power machinery. There are various types of power machinery as shown in Tables 1a and 1b. They are classified into two types by use. One is absorption type of fluid and/or thermal energy, for examples, windmill and heat engine. The other is provision type of the energies for examples, pump, compressor and propulsion. By flow type, they are also classified by two types, turbo type and positive-displacement type. The turbo type began from water mill and windmill and evolve to steam turbine and finally to gas turbine. The positive-displacement type started from reciprocating water pump and developed into steam engine and changed to reciprocating combustion engine. The pumps and motors used in oil hydraulic system for power control are also positive-displacement type.

  • PDF

초고속 용사 적용 고속 초고압 왕복동 펌프 플런저의 내구성 특성에 관한 연구 (A Study on Characteristics of Durability for Plunger of High Speed and Ultra-High Pressure Reciprocating Pump Using High Velocity Oxygen Fuel Spraying)

  • 배명환;박병호;정화;박희성
    • 한국자동차공학회논문집
    • /
    • 제22권5호
    • /
    • pp.20-28
    • /
    • 2014
  • The high velocity oxygen fuel spraying (HVOF) is a kind of surface modification process technology to form the sprayed coating layer after spraying the powder to molten or semi-molten state by the ultra-high speed at the high-temperature heat source and conflicting with a substrate. It is desirable to melt completely the thermal spray powder in order to produce the coating layer with an optimal adhesion, however, because a semi-molten powder in a spray process has the low efficiency and become a factor that degrades the mechanical property by the inducement of pore-forming within the coating layer. To improve the wear resistance, corrosion resistance and heat resistance, in this study, the plungers of high-speed and ultra-high pressure reciprocating hydraulic pumps for oil and water used in ironwork are produced with $420J_2$ and the coating layers of plungers are formed by the powders of WC-Co-Cr and WC-Cr-Ni including the high hardness WC. The surface of these plungers is modified by the super-mirror face grinding machine using variable air pressure developed in this laboratory, and then the characteristics of cross-sectional microstructure, and surface roughness and hardness values between no operation and 100 days-operation are examined and made a comparison. The fine tops and bottoms on surface roughness curve of oil-hydraulic pump plunger sprayed by WC-Cr-Ni are molded more and higher than those of water-hydraulic pump sprayed by WC-Co-Cr because the plunger diameter of oil-hydraulic pump is 0.4 times smaller than that of water-hydraulic pump and the pressure of oil-hydraulic pump exerted on the plunger is operated with the 70 bars higher than that of water-hydraulic pump. As a result, it is found that the values of centerline average surface roughness and maximum height for oil-hydraulic pump plunger are bigger than those of water-hydraulic pump plunger.

자동차 연료펌프 구동용 보이스 코일 전자기 엑츄에이터의 설계 및 해석 (Design and Analysis of Voice Coil Actuator to Drive Fuel Pump in Automobile)

  • 박세명;김진호;배철호
    • 한국자기학회지
    • /
    • 제20권6호
    • /
    • pp.234-238
    • /
    • 2010
  • 캠샤프트의 구동력을 활용한 기계식 연료펌프 시스템을 대체할 솔레노이드 격막 연료펌프는 최근 각광받고 있는 고효율 그린카 부품 중 하나이다. 하지만 솔레노이드 격막 연료펌프의 경우 왕복운동에 필요한 자속을 오직 솔레노이드에 의존하므로 전력소비가 비교적 큰 단점이 있다. 따라서 본 연구에서는 전력소모를 최소화 하기 위하여 영구자석형 VCA 연료펌프 시스템을 제안한다. 또한 상용전자기해석소프트웨어인 MAXWELL을 활용하여 유한요소 해석을 통해 기존의 솔레노이드 격막 펌프와의 전력소모 및 동적 성능을 비교 분석한다.