• 제목/요약/키워드: Reciprocating Engine

검색결과 126건 처리시간 0.026초

소형 장기체공 무인기용 왕복엔진 성능 예측 시뮬레이션 연구 (A Study on Performance Simulation of an Reciprocating Engine for Small Long Endurance Unmanned Aerial Vehicles)

  • 장성호;구삼옥;신영기
    • 대한기계학회논문집B
    • /
    • 제29권7호
    • /
    • pp.820-827
    • /
    • 2005
  • Development of an engine with good fuel economy is very important for successful implementation of long endurance miniature UAVs (unmanned aerial vehicles). In the study, a 4-stroke glow-plug engine was modified to a gasoline-fueled spark-ignition engine. Engine tests measuring performance and friction losses were conducted to tune a simulation program for performance prediction. It has been found that excessive friction losses are caused by insufficient lubrication at high speeds. The simulation program predicts that engine power and fuel economy get worse with high altitude due to increasing portion of friction losses. The simulation results suggest quantitative guidelines for further development of a practical engine.

프리-피스톤 수소기관의 동적 운전특성에 관한 기초연구 (A Basic Study on the Dynamic Characteristics of Free-Piston Hydrogen Fueled Engine)

  • 김윤영;이종태
    • 한국수소및신에너지학회논문집
    • /
    • 제14권4호
    • /
    • pp.283-290
    • /
    • 2003
  • To clarify the cause of backfire occurrence and realize a hydrogen fueled engine linear alternator system, dynamic characteristics of a free-piston hydrogen engine were analyzed and compared with those of conventional reciprocating engines. It was found that the mean velocity and acceleration of a free-piston engine were higher than those of reciprocating engines. Piston displacement and compression ratio were varied with the change of the fuel mass flow rate. Therefore, the operational stability and controllability were the most important thinks of the development of a free-piston hydrogen engine.

Exploring geometric and kinematic correspondences between gear-based crank mechanism and standard reciprocating crankshaft engines: An analytical study

  • Amir Sakhraoui;Fayza Ayari;Maroua Saggar;Rachid Nasri
    • Structural Engineering and Mechanics
    • /
    • 제90권1호
    • /
    • pp.97-106
    • /
    • 2024
  • This paper presents a significant contribution to aided design by conducting an analytical examination of geometric links with the aim of establishing criteria for assessing an analogy measure of the extrinsic geometric and kinematic characteristics of the Variable Compression Ratio (VCR) engine with a Geared Mechanism (GBCM) in comparison to the existing Fixed Compression Ratio (FCR) engine with a Standard-Reciprocating Crankshaft configuration. Employing a mechanical approach grounded in projective computational methods, a parametric study has been conducted to analyze the kinematic behavior and geometric transformations of the moving links. The findings indicate that in order to ensure equivalent extrinsic behavior and maintain consistent input-output performance between both engine types, precise adjustments of intrinsic geometric parameters are necessary. Specifically, for a VCR configuration compared to an FCR configuration, regardless of compression ratio and gearwheel radius, for the same crankshaft ratios and stroke lengths, it is imperative to halve lengths of connecting rods, and crank radius. These insights underscore the importance of meticulous parameter adjustment in achieving comparable performance across different engine configurations, offering valuable implications for design optimization.

왕복운동을 하는 사각채널에서 거칠기 배열이 열전달에 미치는 효과 (Effects of Roughness Arrangement on Heat Transfer in the Reciprocating Channel)

  • 안수환;손강필;진용수;김성태
    • 설비공학논문집
    • /
    • 제15권6호
    • /
    • pp.502-509
    • /
    • 2003
  • This paper describes a detailed experimental investigation of heat transfer in a reciprocating rectangular channel fitted with rib structures with particular reference to the design of a piston for marine propulsive diesel engine. The parametric test matrix involves Reynolds number, reciprocating frequency, and reciprocating radius, respectively in the ranges, 1,000~6,000, 1.7~2.5 Hz, and 7~15 cm with four different rib arrangements. The rib arrangements have considerable influences on the heat transfer in the reciprocating channel due to the modified vortex flow structure. The experimental data confirm that the increases in the heat transfer can be seen in order of Case (b), Case (c), Case (d), and Case (a).

왕복운동을 하는 사각채널에서 파형테이퍼가 열전달에 미치는 효과 (Effects of Wavy Tapers on Heat Transfer in the Reciprocating Rectangular Channel)

  • 안수환;배성택
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제27권5호
    • /
    • pp.600-608
    • /
    • 2003
  • This Paper describes a detailed experimental investigation of heat transfer in a reciprocating smooth rectangular duct having only the bottom wall heated with reference to the design of a piston for a marine propulsive diesel engine The Parametric test matrix involves Reynolds number and reciprocating radius, respectively, in the range of 1.280∼4.100, and 7∼15 cm with five different reciprocating frequency tested. namely. 1.7, 2.2, and 2.6 Hz. The effects of three different hemi-triangular wavy type tapers on the heat transfer in the reciprocating rectangular channel using the air as a working fluid were check out. The present work confirms that the Nusselt number in the channel with the triangular wavy type taper is lower than without the triangular wavy type taper.

왕복운동을하는 채널에서 표면거칠기가 열전달에 미치는 영향 (The Effects of Surface Roughness on Heat Transfer in The Reciprocating Channel)

  • 안수환;손강필
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2002년도 학술대회지
    • /
    • pp.333-336
    • /
    • 2002
  • This paper describes a detailed experimental Investigation of heat transfer In a reciprocating rectangular channel fitted with rib structures with particular reference to the design of a piston for marine propulsive diesel engine. The parametric test matrix involves Reynolds number, reciprocating frequency, and reciprocating radius, respectively, in the ranges, $1,000\;{\~}\;6,000,\;1.7\;{\~}\;2.5\;Hz,\;and\;7\;{\~}\;15cm$ with four different rib arrangements. The rib arrangements have considerable influences on the heat transfer in the reciprocating channel due to the modified vortex flow structure. The experimental data confirm that the increases in the heat transfer can be seen in order of Case (a), Case (d), Case (c), and Case (b)

  • PDF

중대형 왕복동 기관의 진동제어를 위한 능동형 역기진기 제어 알고리즘 개발 (Development of Active Vibration Control Algorithms for the Compensator of Medium-to-large Size Reciprocating Engines)

  • 김대현;고병준;홍석윤;이영제
    • 한국소음진동공학회논문집
    • /
    • 제13권5호
    • /
    • pp.348-356
    • /
    • 2003
  • Active vibration control algorithms for the compensator and proto-type testing system have been developed for the suppression of vibrations from the reciprocating engines. At first, the developed algorithm determines optimal control vibration phases by detecting vibration responses of the engine without and with compensator, and then performs the continuous optimal control functions by tracking the change of the vibration frequency and phase. This algorithm is comparatively simple. robust for the external excitations and needless of supplementary operation since the control process is serially carried out. To validate the performance of compensator and algorithm, testing system including excitation device are constructed and tested, and the reductions of vibration levels are observed over than 80 % of the uncontrolled levels at various frequency ranges.

소형항공기용 왕복엔진의 성능에 관한 흡/배기 영향 (Effects of Breath and Exhaust on the Performance of a Reciprocating Engine for Small Aircraft)

  • 김근배;김근택;최선우
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2002년도 제19회 학술발표대회 논문초록집
    • /
    • pp.37-40
    • /
    • 2002
  • The engine performance test was carried out to investigate the effects of breath and exhaust on the performance of a reciprocating engine for small aircraft. In this test, three valves to control flow areas of a inlet and two outlets were used, the engine manifold pressure and the static thrust of propeller were measured in nine breath/exhaust conditions. Generally, small variations on the performance were showed as the test conditions were changed. The manifold pressure was increased as flow area of the inlet or the outlet was decreased in normal condition, however it was decreased as both flow areas were decreased. The static thrust of propeller was showed similar as the manifold pressure.

  • PDF

Canal preparation with nickel-titanium or stainless steel instruments without the risk of instrument fracture: preliminary observations

  • Yared, Ghassan
    • Restorative Dentistry and Endodontics
    • /
    • 제40권1호
    • /
    • pp.85-90
    • /
    • 2015
  • This report introduces a novel technique that allows a safe and predictable canal negotiation, creation of a glide path and canal preparation with reciprocating nickeltitanium or stainless steel engine-driven instruments in canals where the use of rotary and the newly developed reciprocating instruments is contraindicated. In this novel technique, the instruments are used in reciprocating motion with very small angles. Hand files are not used regardless of the complexity of the canal anatomy. It also allows achieving predictable results in canal negotiation and glide path creation in challenging canals without the risk of instrument fracture.

축대칭 왕복 엔진의 흡입 및 압축과정에서 유동 및 열전달의 수치해석 (Numerical calculations of flow and heat transfer in an axisymmetric reciprocating engine at it's suction and compression stage)

  • 강신형;이창훈
    • 대한기계학회논문집
    • /
    • 제11권3호
    • /
    • pp.395-408
    • /
    • 1987
  • 본 연구에서는 이러한 예측능력 향상에 중점을 두어 2차원 축대칭 모델엔진 실린더내의 유동장 및 열전달특성을 예측할 수 있는 새로운 코오드를 개발하여 실험자 료와의 비교를 통해 프로그램을 검증하고 흡입 및 압축과정을 수치시뮬레이션한 결과 를 보고하고자 한다. 아울러 선회속도의 영향도 고찰하였다. 난류모델은 K-.epsilon.난류 모델을 압축성 효과가 고려되도록 수정된 모델을 사용하였으며 TEACH코오드를 기본으 로 하여 비정상 압축성 유동을 풀 수 있는 새로운 알고리즘을 개발하여 수정하였다.