• Title/Summary/Keyword: Recharge Ratio

Search Result 45, Processing Time 0.029 seconds

Estimation of Groundwater Recharge Ratio Using Cumulative Precipitation and Water-level Change (누적 강수량과 지하수위 곡선을 이용한 지하수 함양률 추정 기법)

  • 문상기;우남칠
    • Journal of Soil and Groundwater Environment
    • /
    • v.6 no.1
    • /
    • pp.33-43
    • /
    • 2001
  • A calculation technique which estimates natural recharge using groundwater level change was proposed and prepared with the existing techniques using groundwater recession curve during dry days. As a part of estimating natural groundwater recharge nation wide, the reliable data from the national groundwater monitoring network were used and the methodology was applied to the three sites which have enough data (Chungju, Jinju and Kwangju). For this study, seasonal variation of groundwater level change, an analysis of lagging time on groundwater level and cumulative precipitation, and a comparative study for groundwater recharge were conducted.

  • PDF

Assessment on Saline Water Intrusion between Types of Injections of Artificial Reclaimed Water and Extractions in Artificial Aquifer (인공 하수처리수 주입과 양수 방식에 따른 인공 대수층의 해수침투평가)

  • Kang, Jeong-Ok;Lee, So-Jung;Kim, Chang-Gyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.6
    • /
    • pp.603-612
    • /
    • 2006
  • The study with laboratory sandbox model has been carried out to address potential use of reclaimed water, as a way for artificially recharging the coastal aquifer, to effectively prevent from seawater intrusion. To do this, we assessed hydraulic and geochemical properties depending upon various extraction and recharging conditions. While solely being recharged, the intrusion could be significantly retarded than those of recharge and extraction implied together. At 0.5 to 2 for the ratio of the extraction over the recharge rate, the fresh water was exploited from the tank, where the void regime was simultaneously saturated with the recharged water. In the meantime, the saline water zone was diluted and back-tracked by the recharged water due to forming a hydraulic geochemical barrier around the injection well. However, if the ratio was being increased to greater than 4, saltwater more deeply intruded to the freshwater zone because the artificial recharge was not sufficiently supplied to timely back-fill the void space. When the aquifer water was intermittently extracted at the ratio of $0.5{\sim}2$ over the recharge rate, the value of S.M.I. decreased, but increasing it to more than 4 unlikely escalated the value of S.M.I as much as $3{\sim}47%$ indicating that the salt water intruded. It finally revealed that the proper ratio of extraction/recharge or intermittent extraction would efficiently retracted seawater intrusion while the freshwater sources could be conservatively utilized.

A Feasibility Test on an Artificial Recharge System for one Representative Greenhouse Complex Zone, Korea (시설농업지역 지하수 인공함양 실증시험 연구)

  • Lee, Byung Sun;Myoung, Wooho;Oh, Sebong;Jun, Seong-Chun;Piao, Jize;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.1
    • /
    • pp.12-24
    • /
    • 2020
  • This study was conducted to examine an artificial recharge system, which was considered to be an alternative for securing additional groundwater resources in a high-density greenhouse region. An injection well with a depth of 14.0 m was placed in an alluvial plain of the zone. Eight monitoring wells were placed in a shape of dual circles around the injection well. Aquifer tests showed that the aquifer was comprised with high-permeable layer with hydraulic conductivities of 1.5×10-3~2.4×10-2 cm/sec and storage coefficients of 0.07~0.10. A step injection test resulted in a specific groundwater-level rising (Sr/Q) values of 0.013~0.018 day/㎡ with 64~92% injection efficiencies. Results of the constant-rate injection test with an optimal injection rate of 100 ㎥/day demonstrated an enormous storage capacity of the alluvial aquifer during ten experimental days. To design an optimal recharge system for an artificial recharge, the high-permeable layer should be isolated by dual packers and suitable pressure should be applied to the injection well in order to store water. An anisotropy ratio of the alluvial aquifer was evaluated to be approximately 1.25 : 1 with an anisotropy angle of 71 degrees, indicating intervals among injection wells are almost the same.

Estimation of Regional Future Agricultural Available Groundwater Supply in Jeju Island Using Water Balance Method (물수지 분석법을 이용한 제주도 권역별 미래 농업용 지하수 공급 가능량 추정)

  • Song, Sung-Ho;Lee, Gyu-Sang;Myoung, Woo-Ho;An, Jung-Gi;Baek, Jin-Hee;Jung, Cha-Youn
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.2
    • /
    • pp.23-37
    • /
    • 2019
  • To evaluate the available groundwater supply to the agricultural water demand in the future with the climate change scenarios for 40 sub-regions in Jeju Island, groundwater recharge and the available groundwater supply were estimated using water balance analysis method. Groundwater recharge was calculated by subtracting the actual evapotranspiration and direct runoff from the total amount of water resources and available groundwater supply was set at 43.6% from the ratio of the sustainable groundwater capacity to the groundwater recharge. According to the RCP 4.5 scenario, the available groundwater supply to the agricultural water demand is estimated to be insufficient in 2020 and 2025, especially in the western and eastern regions of the island. However, such a water shortage problem is alleviated in 2030. When applying the RCP 8.5 scenario, available groundwater supply can't meet the water demand over the entire decade.

A Study of the Variation of Runoff Characteristics Depending upon Installation of the Groundwater Recharge Facilities (인공함양시설 설치에 따른 유출특성 변화에 관한 연구)

  • Choi, Gye-Woon;Kim, Young-Kyu;Jeoung, Kee-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.4 no.4 s.15
    • /
    • pp.27-34
    • /
    • 2004
  • In this paper, in order to analyse the variation of runoff characteristics depending upon installation of the groundwater recharge facilities, the experiment basin was prepared and the ratio of infiltration and runoff volume were observed in the rainfall events. For the rainfall analysis, 4 types of rainfall events were examined during July 11${\sim}$July 17, 2004. The results show that the mean ratio of infiltration was 89.39% and the mean ratio of runoff was 10.61%. For the artificial rainfall events, which are in the range of rainfall intensities between 60mm/hr and 100mm/hr, all the rainfall volume was infiltrated through the groundwater recharging basin. However, it is necessary to be careful for the long term rainfall, the runoff can be occurred based on the groundwater table.

Coupled Model Development between Groundwater Recharge Quantity and Climate Change Using GIS (GIS를 이용한 기후변화 연동 지하수 함양량 산정 모델 개발 및 검증)

  • Lee, Moung-Jin;Lee, Joung-Ho
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.14 no.3
    • /
    • pp.36-51
    • /
    • 2011
  • Global climate change is disturbing the water circulation balance by changing rates of precipitation, recharge and discharge, and evapotranspiration. Groundwater, which occupies a considerable portion of the world's water resources, is related to climate change via surface water such as rivers, lakes, and marshes. In this study, the authors selected a relevant climate change scenario, A1B from the Special Report on Emission Scenario (SRES) which is distributed at Korea Meteorological Administration. By using data on temperature, rainfall, soil, and land use, the groundwater recharge rate for the research area was estimated by periodically and embodied as geographic information system (GIS). In order to calculate the groundwater recharge quantity, Visual HELP3 was used as main model, and the physical properties of weather, temperature, and soil layers were used as main input data. General changes to water circulation due to climate change have already been predicted. In order to systematically solve problems of ground circulation system, it may be urgent to recalculate the groundwater recharge quantity and consequent change under future climate change. The space-time calculation of changes of the groundwater recharge quantity in the study area may serve as a foundation to present additional measures to improve domestic groundwater resource management.

The Study on Time Series Analysis of Groundwater Data and Groundwater Recharge in Jeju Island (제주도 수리자료에 대한 시계열 분석 및 지하수 함양률 추정 연구)

  • Choi, Hyun-Mi;Lee, Jin-Yong;Ha, Kyoo-Chul;Kim, Gee-Pyo
    • The Journal of Engineering Geology
    • /
    • v.21 no.4
    • /
    • pp.337-348
    • /
    • 2011
  • We examined temporal variations in and relationships among groundwater level, groundwater temperature, and electric conductivity, and estimated groundwater recharge at Jeju Island. The time lag and regulation time of groundwater level data revealed that monitoring well in Ansung (JM-AS) has the highest auto-correlation. The cross-correlations for electric conductivity-water level, precipitation-water level, and air temperature-water temperature revealed that monitoring well in Seogwi-2 (JR-SG2) (electric conductivity-water level), monitoring well in Hamo (JD-HM) (precipitation-water level), and monitoring well in Wonjongjang-2 (JT-WJJ2) (air temperature-water temperature) had the highest cross-correlations. The average groundwater recharge ratio was 39.61%, and the average groundwater recharge amount was 1,153,490,407 $m^3/yr$, which is consistent with the results of previous studies.

A Note on Estimating and Managing Groundwater Reserves (지하수 부존량 평가와 관리에 대한 소고)

  • Lee, Byung Sun;Park, Jong Hwan;Myoung, Wooho;Son, Joohyeong;Lee, Sanghaw;Shim, Gyuseong;Song, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.6
    • /
    • pp.28-36
    • /
    • 2018
  • This study was conducted to estimate groundwater reserves within a designated depth. Three methods were applied to one representative county in southern Gyeongsang province, South Korea, to estimate the groundwater reserves in the aquifers. Estimated amounts of groundwater reserves in the region ranged from $20.2{\times}10^9m^3$ to $68.7{\times}10^9m^3$ (average $37.9{\times}10^9m^3$). Groundwater recharge obtained with a recharge ratio of 16.6% was $1.1{\times}10^9m^3/year$. Exploitable groundwater with an assumption of decadal-cycle minimal rainfall of 977.0 mm/year was approximated as 72% ($0.8{\times}10^9m^3/year$) of the total replenished water by recharge. The volume of recharge and exploitable water accounted for only 1.1% and 0.8% of groundwater reserves, respectively, which indicates substantial capacity of the reservoir to supply groundwater in an event of unexpected droughts. Nonetheless, each groundwater well should strictly comply with its allocated pumping rate to avoid alluvial groundwater depletion.

An Integrated Water Budget Analysis of Oedocheon Watershed in Jeju Island (제주 외도천 유역의 통합 물수지 분석)

  • Kim, Nam Won;Chung, Il-Moon;Na, Hanna
    • Journal of Environmental Science International
    • /
    • v.24 no.4
    • /
    • pp.471-480
    • /
    • 2015
  • Hydrologic component analysis was conducted to investigate water budget characteristics the Oedocheon watershed, Jeju Island. For this purpose, integrated SWAT-MODFLOW model was applied to this watershed for continuous surface water-groundwater modeling. Pasture and forest-deciduous are the major land use types and these affect general hydrologic component ratio. The spatio-temporal groundwater recharge can be obtained from SWAT and then distributed groundwater recharge can be reproduced by MODFLOW. The groundwater level variation was simulated with distributed groundwater pumping data. The water budget in this watershed was compared with the previous estimated result by Jeju-Do(2013). As this result considered discharge to the coastal side, the discrepancy was found. However, it was found that the overall tendency of both analyses were similar.

Monitoring of Seawater Intrusion in Unconfined Physical Aquifer Model using Time Domain Reflectometry (자유면 대수층 모형에서의 TIME DOMAIN REFLECTOMETRY를 이용한 해수침투 모니터링)

  • 김동주;하헌철;온한상
    • The Journal of Engineering Geology
    • /
    • v.13 no.1
    • /
    • pp.17-27
    • /
    • 2003
  • In this study, a phenomenon of saltwater intrusion was monitored under various conditions regarding recharge and pumping rate using time domain reflectometry for a laboratory scale unconfined aquifer to verify the basic theory behind seawater intrusion and to investigate movement of salt-freshwater interface in accordance with the ratio of pumping and recharge rate. Results showed that a thick mixing zone was formed at the boundary instead of a sharp salt-freshwater interface that was assumed by Ghyben and Herzberg who derived an equation relating the water table depth $(H_f)$ to the depth to the interface $(H_s)$. Therefore our experimental results did not agree with the calculated values obtained from the Ghyben and Herzberg equation. Position of interface which was adopted as 0.5 g/L isochlor moved rapidly as the Pumping rate $(Q_p)$ increased for a given recharge rate $(Q_r)$. In addition, interface movement was found to be about 7 times the ratio of $Q_p/Q_r$ in our experimental condition. This indicates that Pumping rate becomes an important factor controlling the seawater intrusion in coastal aquifer.