• Title/Summary/Keyword: Receptors, GABA

Search Result 87, Processing Time 0.026 seconds

Resveratrol Inhibits $GABA_C$ ${\rho}$ Receptor-Mediated Ion Currents Expressed in Xenopus Oocytes

  • Lee, Byung-Hwan;Choi, Sun-Hye;Hwang, Sung-Hee;Kim, Hyeon-Joong;Lee, Joon-Hee;Nah, Seung-Yeol
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.2
    • /
    • pp.175-180
    • /
    • 2013
  • Resveratrol is a phytoalexin found in grapes, red wine, and berries. Resveratrol has been known to have many beneficial health effects, such as anti-cancer, neuroprotective, anti-inflammatory, and life-prolonging effects. However, relatively little is known about the effects of resveratrol on the regulation of ligand-gated ion channels. We have previously reported that resveratrol regulates subsets of homomeric ligand-gated ion channels such as those of 5-$HT_{3A}$ receptors. The ${\gamma}$-aminobutyric $acid_C$($GABA_C$) receptor is mainly expressed in retinal bipolar cells and plays an important role in visual processing. In the present study, we examined the effects of resveratrol on the channel activity of homomeric $GABA_C$ receptor expressed in Xenopus oocytes injected with cRNA encoding human $GABA_C$ ${\rho}$ subunits. Our data show that the application of GABA elicits an inward peak current ($I_{GABA}$) in oocytes that express the $GABA_C$ receptor. Resveratrol treatment had no effect on oocytes injected with $H_2O$ or with $GABA_C$ receptor cRNA. Co-treatment with resveratrol and GABA inhibited $I_{GABA}$ in oocytes with $GABA_C$ receptors. The inhibition of $I_{GABA}$ by resveratrol was in a reversible and concentration-dependent manner. The $IC_{50}$ of resveratrol was $28.9{\pm}2.8{\mu}M$ in oocytes expressing $GABA_C$ receptor. The inhibition of $I_{GABA}$ by resveratrol was in voltage-independent and non-competitive manner. These results indicate that resveratrol might regulate $GABA_C$ receptor expression and that this regulation might be one of the pharmacological actions of resveratrol on the nervous system.

Sedative-Hypnotic and Receptor Binding Studies of Fermented Marine Organisms

  • Joung, Hye-Young;Kang, Young Mi;Lee, Bae-Jin;Chung, Sun Yong;Kim, Kyung-Soo;Shim, Insop
    • Biomolecules & Therapeutics
    • /
    • v.23 no.5
    • /
    • pp.479-485
    • /
    • 2015
  • This study was performed to investigate the sedative-hypnotic activity of ${\gamma}$-aminobutyric acid (GABA)-enriched fermented marine organisms (FMO), including sea tangle (FST) and oyster (FO) by Lactobacillus brevis BJ20 (L. brevis BJ20). FST and FO were tested for their binding activity of the $GABA_A$-benzodiazepine and 5-$HT_{2C}$ receptors, which are well-known molecular targets for sleep aids. We also measured the sleep latency and sleep duration during pentobarbital-induced sleep in mice after oral administration of FST and FO. In $GABA_A$ and 5-$HT_{2C}$ receptor binding assays, FST displayed an effective concentration-dependent binding affinity to $GABA_A$ receptor, similar to the binding affinity to 5-$HT_{2C}$ receptor. FO exhibited higher affinity to 5-$HT_{2C}$ receptor, compared with the $GABA_A$ receptor. The oral administration of FST and FO produced a dose-dependent decrease in sleep latency and increase in sleep duration in pentobarbital-induced hypnosis. The data demonstrate that FST and FO possess sedativehypnotic activity possibly by modulating $GABA_A$ and 5-$HT_{2C}$ receptors. We propose that FST and FO might be effective agents for treatment of insomnia.

Localization of the Major Retinal Neurotransmitters and Receptors and Müller Glia in the Retina of the Greater Horseshoe Bat (Rhinolophus ferrumequinum) (한국관박쥐 망막의 신경전달물질 및 수용체, 뮬러세포 동정)

  • Lee, Jun-Seok;Kwon, Oh-Ju;Jeon, Tae-Heon;Jeon, Chang-Jin
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.20 no.3
    • /
    • pp.391-396
    • /
    • 2015
  • Purpose: The objective of this study was to investigate the visual system of the greater horseshoe bat (Rhinolophus ferrumequinum) by location analysis of some major neurotransmitters glutamate, ${\gamma}$-aminobutyric acid (GABA), acetylcholine, and their receptors, and $m{\ddot{u}}ller$ glial cells in retina. Methods: Standard immunocytochemical techniques were used after vibratome section of retinal tissues of adult greater horseshoe bat for this study. Immnoreactions in immunofluorescence images were analyzed using confocal microscope. Results: Anti-glutamate-immunoreactive neurons were mainly localized in the ganglion cell layer (GCL). The majority of anti-GABA-immunoreactive cells distributed in the inner nuclear layer (INL), and GABAA receptors were localized in the inner plexiform layer (IPL). Anti-choline acetyltransferase-immuoreactive cholinergic neurons were mainly located in the INL and GCL, and most of nicotinic acetylcholine receptors were localized in the IPL. The $m{\ddot{u}}ller$ cells in the retina of the greater horseshoe bat stretched theirs range from the GCL to outer nuclear layer (ONL). Conclusions: This study revealed that the retinas of the greater horseshoe bats contain the same major neurotransmitters and receptors, and glial cell in visually functional mammalian retinas. The present results may suggest that the greater horseshoe bats have the functional retinas for visual analysis through the organized retinal neural circuits.

Ginsenoside Rb1 exerts neuroprotective effects through regulation of Lactobacillus helveticus abundance and GABAA receptor expression

  • Chen, Huimin;Shen, Jiajia;Li, Haofeng;Zheng, Xiao;Kang, Dian;Xu, Yangfan;Chen, Chong;Guo, Huimin;Xie, Lin;Wang, Guangji;Liang, Yan
    • Journal of Ginseng Research
    • /
    • v.44 no.1
    • /
    • pp.86-95
    • /
    • 2020
  • Background: Ginsenoside Rb1 (Rb1), one of the most abundant protopanaxadiol-type ginsenosides, exerts excellent neuroprotective effects even though it has low intracephalic exposure. Purpose: The present study aimed to elucidate the apparent contradiction between the pharmacokinetics and pharmacodynamics of Rb1 by studying the mechanisms underlying neuroprotective effects of Rb1 based on regulation of microflora. Methods: A pseudo germ-free (PGF) rat model was established, and neuroprotective effects of Rb1 were compared between conventional and PGF rats. The relative abundances of common probiotics were quantified to reveal the authentic probiotics that dominate in the neuroprotection of Rb1. The expressions of the gamma-aminobutyric acid (GABA) receptors, including GABAA receptors (α2, β2, and γ2) and GABAB receptors (1b and 2), in the normal, ischemia/reperfusion (I/R), and I/R+Rb1 rat hippocampus and striatum were assessed to reveal the neuroprotective mechanism of Rb1. Results: The results showed that microbiota plays a key role in neuroprotection of Rb1. The relative abundance of Lactobacillus helveticus (Lac.H) increased 15.26 fold after pretreatment with Rb1. I/R surgery induced effects on infarct size, neurological deficit score, and proinflammatory cytokines (IL-1β, IL-6, and TNF-α) were prevented by colonizing the rat gastrointestinal tract with Lac.H (1 × 109 CFU) by gavage 15 d before I/R surgery. Both Rb1 and Lac.H upregulated expression of GABA receptors in I/R rats. Coadministration of a GABAA receptor antagonist significantly attenuated neuroprotective effects of Rb1 and Lac.H. Conclusion: In sum, Rb1 exerts neuroprotective effects by regulating Lac.H and GABA receptors rather than through direct distribution to the target sites.

Participation of central GABAA receptors in the trigeminal processing of mechanical allodynia in rats

  • Kim, Min Ji;Park, Young Hong;Yang, Kui Ye;Ju, Jin Sook;Bae, Yong Chul;Han, Seong Kyu;Ahn, Dong Kuk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.1
    • /
    • pp.65-74
    • /
    • 2017
  • Here we investigated the central processing mechanisms of mechanical allodynia and found a direct excitatory link with low-threshold input to nociceptive neurons. Experiments were performed on male Sprague-Dawley rats weighing 230-280 g. Subcutaneous injection of interleukin 1 beta ($IL-1{\beta}$) ($1ng/10{\mu}L$) was used to produce mechanical allodynia and thermal hyperalgesia. Intracisternal administration of bicuculline, a gamma aminobutyric acid A ($GABA_A$) receptor antagonist, produced mechanical allodynia in the orofacial area under normal conditions. However, intracisternal administration of bicuculline (50 ng) produced a paradoxical anti-allodynic effect under inflammatory pain conditions. Pretreatment with resiniferatoxin (RTX), which depletes capsaicin receptor protein in primary afferent fibers, did not alter the paradoxical anti-allodynic effects produced by the intracisternal injection of bicuculline. Intracisternal injection of bumetanide, an Na-K-Cl cotransporter (NKCC 1) inhibitor, reversed the $IL-1{\beta}$-induced mechanical allodynia. In the control group, application of GABA ($100{\mu}M$) or muscimol ($3{\mu}M$) led to membrane hyperpolarization in gramicidin perforated current clamp mode. However, in some neurons, application of GABA or muscimol led to membrane depolarization in the $IL-1{\beta}$-treated rats. These results suggest that some large myelinated $A{\beta}$ fibers gain access to the nociceptive system and elicit pain sensation via $GABA_A$ receptors under inflammatory pain conditions.

Developmental changes in GABAA tonic inhibition are compromised by multiple mechanisms in preadolescent dentate gyrus granule cells

  • Pandit, Sudip;Lee, Gyu Seung;Park, Jin Bong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.21 no.6
    • /
    • pp.695-702
    • /
    • 2017
  • The sustained tonic currents ($I_{tonic}$) generated by ${\gamma}$-aminobutyric acid A receptors ($GABA_{A}Rs$) are implicated in diverse age-dependent brain functions. While various mechanisms regulating $I_{tonic}$ in the hippocampus are known, their combined role in $I_{tonic}$ regulation is not well understood in different age groups. In this study, we demonstrated that a developmental increase in GABA transporter (GAT) expression, combined with gradual decrease in $GABA_AR{\alpha}_5$ subunit, resulted in various $I_{tonic}$ in the dentate gyrus granule cells (DGGCs) of preadolescent rats. Both GAT-1 and GAT-3 expression gradually increased at infantile ($P_{6-8}$ and $P_{13-15}$) and juvenile ($P_{20-22}$ and $P_{27-29}$) stages, with stabilization observed thereafter in adolescents ($P_{34-36}$) and young adults ($P_{41-43}$). $I_{tonic}$ facilitation of a selective GAT-1 blocker (NO-711) was significantly less at $P_{6-8}$ than after $P_{13-15}$. The facilitation of $I_{tonic}$ by SNAP-5114, a GAT-3 inhibitor, was negligible in the absence of exogenous GABA at all tested ages. In contrast, $I_{tonic}$ in the presence of a nonselective GAT blocker (nipecotic acid, NPA) gradually decreased with age during the preadolescent period, which was mimicked by $I_{tonic}$ changes in the presence of exogenous GABA. $I_{tonic}$ sensitivity to L-655,708, a $GABA_AR{\alpha}_5$ subunit inverse agonist, gradually decreased during the preadolescent period in the presence of NPA or exogenous GABA. Finally, Western blot analysis showed that the expression of the $GABA_AR{\alpha}_5$ subunit in the dentate gyrus gradually decreased with age. Collectively, our results suggested that the $I_{tonic}$ regulation of altered GATs is under the final tune of $GABA_AR{\alpha}_5$ subunit activation in DGGCs at different ages.

Inhibitory and Excitatory Postsynaptic Currents of Medial Vestibular Nucleus Neurons of Rats

  • Chun, Sang-Woo;Choi, Jeong-Hee;Park, Byung-Rim
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.2
    • /
    • pp.59-63
    • /
    • 2003
  • The medial vestibular nucleus (MVN) neurons are controlled by excitatory synaptic transmission from the vestibular afferent and commissural projections, and by inhibitory transmission from interneurons. Spontaneous synaptic currents of MVN neurons were studied using whole cell patch clamp recording in slices prepared from 13- to 17-day-old rats. The spontaneous inhibitory postsynaptic currents (sIPSCs) were significantly reduced by the $GABA_A$ antagonist bicuculline ($20{\mu}M$), but were not affected by the glycine antagonist strychnine ($1{\mu}M$). The frequency, amplitude, and decay time constant of sIPSCs were $4.3{\pm}0.9$ Hz, $18.1{\pm}2.0$ pA, and $8.9{\pm}0.4$ ms, respectively. Spontaneous excitatory postsynaptic currents (sEPSCs) were mediated by non-NMDA and NMDA receptors. The specific AMPA receptor antagonist GYKI-52466 ($50{\mu}M$) completely blocked the non-NMDA mediated sEPSCs, indicating that they are mediated by an AMPA-preferring receptor. The AMPA mediated sEPSCs were characterized by low frequency ($1.5{\pm}0.4$ Hz), small amplitude ($13.9{\pm}1.9$ pA), and rapid decay kinetics ($2.8{\pm}0.2$ ms). The majority (15/21) displayed linear I-V relationships, suggesting the presence of GluR2-containing AMPA receptors. Only 35% of recorded MVN neurons showed NMDA mediated currents, which were characterized by small amplitude and low frequency. These results suggest that the MVN neurons receive excitatory inputs mediated by AMPA, but not kainate, and NMDA receptors, and inhibitory transmission mediated by $GABA_A$ receptors in neonatal rats.

Central Involvement of Benzodiazepine Receptor on the Muscimol-induced Inhibition of Micturition Reflex in Rats (흰쥐의 뮤시몰투여에 의한 배뇨반사억제효과에 대한 벤조디아제핀수용체의 영향)

  • Huh, In-Hoi;Oh, Ho-Jung
    • YAKHAK HOEJI
    • /
    • v.36 no.5
    • /
    • pp.496-505
    • /
    • 1992
  • The correlation between GABA receptors($GABA_A$ and $GABA_B$ receptor) and benzodiazepine receptor on the saline infusion-induced micturition reflex contraction was studied in the female rat. To investigate the effect of ${\gamma}-aminobutyric$ acid(GABA) on the micturition reflex, exogenous GABA(10 mg/kg) and GABA transaminase inhibitor(aminooxyacetic acid; AOAA $1\;{\mu}g$) were administered intravenously(i.v.) and intracerebroventriculary(i.c.v.), respectively. In result, both GABA and AOAA inhibited the saline induced micturition reflex contraction. This AOAA induced inhibition of micturition reflex was blocked by both bicuculine. $GABA_A$ receptor antagonist, and Ro 15-1788, benzodiazepine receptor antagonist. Muscimol, $GABA_A$ receptor antagonist($0.1\;{\mu}g$ i.c.v., $3\;{\mu}g$ intrathecal; i.t., 1 mg/kg i.v.) and baclofen, $GABA_A$ receptor agonist($1\;{\mu}g$ i.c.v., $3\;{\mu}g$ i.t., 1 mg/kg i.v.) also inhibited the bladder contraction. Pretreatment of bicuculline($1\;{\mu}g$ i.c.v.), but not of 5-aminovaleric acid(AVA, $1\;{\mu}g$ i.c.v.), $GABA_B$ receptor antagonist blocked the central inhibition of muscimol. These inhibitory effects were reversed by Ro15-1788 but were potentiated by flurazepam, benzodiazepine receptor antagonist. On the other hand, the inhibitory effects of baclofen were not affected by Ro 15-1788. Diazepam and flurazepam also inhibited the micturition reflex contraction when they were administered $3\;{\mu}g$ i.c.v., $10\;{\mu}g$ i.t., $10\;{\mu}M$, $30\;{\mu}M$ transurethrally, respectively. In conclusion, these results suggest that the micturition reflex is mediated by $GABA_A$, $GABA_B$ receptor and benzodiazepine receptor. The bezodiazepines increase the receptor binding of GABA to the $GABA_A$ receptor, so that the benzodiiazepines show the synergistic effect on the inhibition of the micturition reflex contraction, but not to the $GABA_B$ receptor.

  • PDF