• Title/Summary/Keyword: Receptor tyrosine kinase

Search Result 276, Processing Time 0.025 seconds

The Molecular Insight into the Vascular Endothelial Growth Factor in Cancer: Angiogenesis and Metastasis (암의 혈관내피 성장인자에 대한 분자적 통찰: 혈관신생과 전이)

  • Han Na Lee;Chae Eun Seo;Mi Suk Jeong;Se Bok Jang
    • Journal of Life Science
    • /
    • v.34 no.2
    • /
    • pp.128-137
    • /
    • 2024
  • This review discusses the pivotal role of vascular endothelial growth factors (VEGF) in angiogenesis and lymphangiogenesis, vital processes influencing vascular permeability, endothelial cell recruitment, and the maintenance of tumor-associated blood and lymphatic vessels. VEGF exerts its effects through tyrosine-kinase receptors, VEGFR-1, VEGFR-2, and VEGFR-3. This VEGF-VEGFR system is central not only to cancer but also to diseases arising from abnormal blood vessel and lymphatic vessel formation. In the context of cancer, VEGF and its receptors are essential for the development of tumor-associated vessels, making them attractive targets for therapeutic intervention. Various approaches, such as anti-VEGF antibodies, receptor antagonists, and VEGF receptor function inhibitors, are being explored to interfere with tumor growth. However, the clinical efficacy of anti-angiogenic agents remains uncertain and necessitates further refinement. The article also highlights the physiological role of VEGFs, emphasizing their involvement in endothelial cell functions, survival, and vascular permeability. The identification of five distinct VEGFs in humans (VEGF-A, VEGF-B, VEGF-C, VEGF-D, and PLGF) is discussed, along with the classification of VEGFRs as typical receptor tyrosine kinases with distinct signaling systems. The family includes VEGFR-1 and VEGFR-2, crucial in tumor biology and angiogenesis, and VEGFR-3, specifically involved in lymphangiogenesis. Overall, this review has provided a comprehensive overview of VEGF and VEGFR, detailing their roles in various diseases, including cancer. This is expected to further facilitate the utilization of VEGF and VEGFR as therapeutic targets.

Expression of DNA-dependent Protein Kinase and Its Relationship with Epidermal Growth Factor Receptor Signaling in Metastatic Cancer Cell Lines (DNA-PK 및 표피성장인자수용체의 신호전달이 암전이에 미치는 영향)

  • Hwang Jee Young;Kim Sun Hee;Kang Chi Dug;Yoon Man Soo
    • Journal of Life Science
    • /
    • v.15 no.3 s.70
    • /
    • pp.406-414
    • /
    • 2005
  • The genetic instability of cancer cells may be related to inappropriately activated DNA repair pathways. In present study, the modulated expression of DNA-dependent protein kinase (DNA-PK), a major DNA repair protein, in human cancer metastatic cells was tested. The expressions of Ku70/80, regulatory subunit of DNA-PK, and the Ku DNA-binding activity in various highly metastatic cell lines were higher than those in each parental cell line. Also, the expression of DNA-PKcs, catalytic subunit of DNA-PK, and the kinase activity of the whole DNA-PK complex in highly metastatic cells were significantly increased as compared to those of parental cells, suggesting that the enhanced DNA repair capacity of metastatic cells could be associated with aberrant use of DNA repair, which may mediate tumor progression and metastatic potential. Increased EGFR (epidermal growth factor receptor) signaling has been associated with tumor invasion and metastasis, and the linkage between EGFR-mediated signaling and DNA-PK has been suggested. This study showed that PKI166, the new EGFR tyrosine kinase inhibitor, modulated the expressions of Ku70/80 and DNA-PKcs and also revealed the chemosensitization effect of PKI166 against metastatic cells may be in part due to inhibition of Ku70/80. These results suggest that interference in EGFR signaling by EGFR inhibitor resulted in the impairment of DNA repair activity, and thus DNA-PK could be possible molecular targets for therapy against metastatic cancer cells.

Fyn Kinase: A Potential Therapeutic Target in Acute Kidney Injury

  • Uddin, Md Jamal;Dorotea, Debra;Pak, Eun Seon;Ha, Hunjoo
    • Biomolecules & Therapeutics
    • /
    • v.28 no.3
    • /
    • pp.213-221
    • /
    • 2020
  • Acute kidney injury (AKI) is a common disease with a complex pathophysiology which significantly contributes to the development of chronic kidney disease and end stage kidney failure. Preventing AKI can consequently reduce mortality, morbidity, and healthcare burden. However, there are no effective drugs in use for either prevention or treatment of AKI. Developing therapeutic agents with pleiotropic effects covering multiple pathophysiological pathways are likely to be more effective in attenuating AKI. Fyn, a non-receptor tyrosine kinase, has been acknowledged to integrate multiple injurious stimuli in the kidney. Limited studies have shown increased Fyn transcription level and activation under experimental AKI. Activated Fyn kinase propagates various downstream signaling pathways associated to the progression of AKI, such as oxidative stress, inflammation, endoplasmic reticulum stress, as well as autophagy dysfunction. The versatility of Fyn kinase in mediating various pathophysiological pathways suggests that its inhibition can be a potential strategy in attenuating AKI.

Mechanisms involved in adenosine pharmacological preconditioning-induced cardioprotection

  • Singh, Lovedeep;Kulshrestha, Ritu;Singh, Nirmal;Jaggi, Amteshwar Singh
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.22 no.3
    • /
    • pp.225-234
    • /
    • 2018
  • Adenosine is a naturally occurring breakdown product of adenosine triphosphate and plays an important role in different physiological and pathological conditions. Adenosine also serves as an important trigger in ischemic and remote preconditioning and its release may impart cardioprotection. Exogenous administration of adenosine in the form of adenosine preconditioning may also protect heart from ischemia-reperfusion injury. Endogenous release of adenosine during ischemic/remote preconditioning or exogenous adenosine during pharmacological preconditioning activates adenosine receptors to activate plethora of mechanisms, which either independently or in association with one another may confer cardioprotection during ischemia-reperfusion injury. These mechanisms include activation of $K_{ATP}$ channels, an increase in the levels of antioxidant enzymes, functional interaction with opioid receptors; increase in nitric oxide production; decrease in inflammation; activation of transient receptor potential vanilloid (TRPV) channels; activation of kinases such as protein kinase B (Akt), protein kinase C, tyrosine kinase, mitogen activated protein (MAP) kinases such as ERK 1/2, p38 MAP kinases and MAP kinase kinase (MEK 1) MMP. The present review discusses the role and mechanisms involved in adenosine preconditioning-induced cardioprotection.

Erythropoietin-producing Human Hepatocellular Carcinoma Receptor B1 Polymorphisms are Associated with HBV-infected Chronic Liver Disease and Hepatocellular Carcinoma in a Korean Population

  • Kim, Kyoung-Yeon;Lee, Seung-Ku;Kim, Min-Ho;Cheong, Jae-Youn;Cho, Sung-Won;Yang, Kap-Seok;Kwack, Kyu-Bum
    • Genomics & Informatics
    • /
    • v.6 no.4
    • /
    • pp.192-201
    • /
    • 2008
  • Erythropoietin-producing human hepatocellular carcinoma receptor B1 (EPHB1) is a member of the Eph family of receptor tyrosine kinases that mediate vascular system development. Eph receptor overexpression has been observed in various cancers and is related to the malignant transformation, metastasis, and differentiation of cancers, including hepatocellular carcinoma (HCC). Eph receptors regulate cell migration and attachment to the extracellular matrix by modulating integrin activity. EphrinB1, the ligand of EPHB1, has been shown to regulate HCC carcinogenesis. Here, we sought to determine whether EPHB1 polymorphisms are associated with hepatitis B virus (HBV)-infected liver diseases, including chronic liver disease (CLD) and HCC. We genotyped 26 EPHB1 single nucleotide polymorphisms (SNPs) in 399 Korean CLD, HCC, and LD (CLD+HCC) cases and seroconverted controls (HBV clearance, CLE) using the GoldenGate assay. Two SNPs (rs6793828 and rs11717042) and 1 haplotype that were composed of these SNPs were associated with an increased risk for CLD, HCC, and LD (CLD+HCC) compared with CLE. Haplotypes that could be associated with HBV-infected liver diseases by affecting downstream signaling were located in the Eph tyrosine kinase domain of EPHB1. Therefore, we suggest that EPHB1 SNPs, haplotypes, and diplotypes may be genetic markers for the progression of HBV-associated acute hepatitis to CLD and HCC.

Studies on Intracellular Regulatory Proteins of Pancreatic Exocrine Secretion (이자효소 분비에 관여하는 세포 내 조절 단백에 대한 연구)

  • Chung, Ku-Yong;Choi, Jae-Won;Choi, Hong-Soon;Kim, Kyung-Hwan
    • The Korean Journal of Pharmacology
    • /
    • v.32 no.2
    • /
    • pp.243-257
    • /
    • 1996
  • CCK and cholinergic agonist stimulate enzyme release from the pancreatic acini via G-protein-mediated activation of phospholipase C, In contrast secretin and related peptides increase the level of cAMP and activate cAMP-dependent protein kinase. Camostat, a synthetic protease inhibitor, causes pancreatic hypertrophy and hyperplasia by increasing the CCK release. In this study, the secretagogue-induced changes of intracellular proteins were examined in the dispersed pancreatic acini of rats with or without camostat treatment. Camostat(FOY-305, 200 mg/kg, p.o.) was given for 4 days twice daily and the dispersed acini were prepared at 12 bouts after last treatment. The profiles of Intracellular phosphoproteins were analyzed by two-dimensional gel electrophoresis after incubating the acini with $^{32}P$. The amylase release from the dispersed acini was measured. The pancreatic weight was increased to 126% of control, while amylase activity per mg acinar protein decreased to 41% of control, The maximum response of amylase release from dispersed acini to CCK-8 or carbachol was markedly decreased(65% or 46% of control, respectively). The group of intracellular proteins(24 kD, pI $4.5{\sim}8.5$) was increased in quantity by camostat. CCK-8 or secretin increased phosphorylation of a protein(34 kD, pI 4.7) in camostat-treated as well as control rats. CCK-8 increased tyrosine phosphoryiation in the acini of control rats. However, in camostat-treated rats, the basal level of tyrosine phosphorylation was increased and it was rather decreased by CCK-8. Secretin had no effect on the level of tyrosine phosphorylation in acini. These results indicate that both phospholipase C and adenylate cyclase induce phosphorylation of an intracellular acinar protein(34 kD, pI 4.7) and camostat treatment increases the basal level of tyrosine phosphorylation in acinar cells. And these results suggest that not only serine/threonine protein kinase but also protein tyrosine kinase/phosphatase are involved in the process of CCK receptor mediated stimulation-secrelion coupling.

  • PDF

Type 3 muscarinic acetylcholine receptor stimulation is a determinant of endothelial barrier function and adherens junctions integrity: role of protein-tyrosine phosphatase 1B

  • Jiao, Zhou-Yang;Wu, Jing;Liu, Chao;Wen, Bing;Zhao, Wen-Zeng;Du, Xin-Ling
    • BMB Reports
    • /
    • v.47 no.10
    • /
    • pp.552-557
    • /
    • 2014
  • The main purpose of this study was to investigate whether type 3 muscarinic acetylcholine receptor (M3R) dysfunction induced vascular hyperpermeability. Transwell system analysis showed that M3R inhibition by selective antagonist 4-diphenylacetoxy-N-methylpiperidine methiodide (4-DAMP) and small interfering RNA both increased endothelial permeability. Using coimmunoprecipitation and Western blot assay, we found that M3R inhibition increased VE-cadherin and ${\beta}$-catenin tyrosine phosphorylation without affecting their expression. Using PTP1B siRNA, we found that PTP1B was required for maintaining VE-cadherin and ${\beta}$-catenin protein dephosphorylation. In addition, 4-DAMP suppressed PTP1B activity by reducing cyclic adenosine monophosphate (cAMP), but not protein kinase $C{\alpha}$ ($PKC{\alpha}$). These data indicate that M3R preserves the endothelial barrier function through a mechanism potentially maintaining PTP1B activity, keeping the adherens junction proteins (AJPs) dephosphorylation.

HQSAR Study on Substituted 1H-Pyrazolo[3,4-b]pyridines Derivatives as FGFR Kinase Antagonists

  • Bhujbal, Swapnil P.;Balasubramanian, Pavithra K.;Keretsu, Seketoulie;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.10 no.2
    • /
    • pp.85-94
    • /
    • 2017
  • Fibroblast growth factor receptor (FGFR) belongs to the family of receptor tyrosine kinase. They play important roles in cell proliferation, differentiation, development, migration, survival, wound healing, haematopoiesis and tumorigenesis. FGFRs are reported to cause several types of cancers in humans which make it an important drug target. In the current study, HQSAR analysis was performed on a series of recently reported 1H-Pyrazolo [3,4-b]pyridine derivatives as FGFR antagonists. The model was developed with Atom (A) and bond (B) connection (C), chirality (Ch), hydrogen (H) and donor/acceptor (DA) parameters and with different set of atom counts to improve the model. A reasonable HQSAR model ($q^2=0.701$, SDEP=0.654, NOC=5, $r^2=0.926$, SEE=0.325, BHL=71) was generated which showed good predictive ability. The contribution map depicted the atom contribution in inhibitory effect. A contribution map for the most active compound (compound 24) indicated that hydrogen and nitrogen atoms in the side chains of ring B as well as hydrogen atoms in the side chain of ring C and the nitrogen atom in the ring D contributed positively to the activity in inhibitory effect whereas, the lowest active compound (compound 04) showed negative contribution to inhibitory effect. Thus results of our study can provide insights in the designing potent and selective FGFR kinase inhibitors.

Effects of an Epithelial Growth Factor Receptor-Tyrosine Kinase Inhibitor Add-on in Stereotactic Radiosurgery for Brain Metastases Originating from Non-Small-Cell Lung Cancer

  • Kim, Hyun Jung;Kim, Woo Sung;Kwon, Do Hoon;Cho, Young Hyun;Choi, Chang-Min
    • Journal of Korean Neurosurgical Society
    • /
    • v.58 no.3
    • /
    • pp.205-210
    • /
    • 2015
  • Objective : This study was aimed at optimizing the treatment of non-small-cell lung cancer (NSCLC) patients who are candidates for stereotactic radiosurgery (SRS) for brain metastases and harbor activating epithelial growth factor receptor (EGFR) mutations. Methods : We retrospectively reviewed the medical records from 2005 to 2010 of NSCLC patients with brain metastases harboring an activating EGFR mutation. Patients who received a combination therapy of SRS and EGFR-tyrosine kinase inhibitor (TKI) for brain metastases and those who received SRS without EGFR-TKI were compared. The primary endpoint was progression-free survival (PFS) of the brain metastases. Results : Thirty-one patients were eligible for enrolment in this study (SRS with TKI, 18; SRS without TKI, 13). Twenty-two patients (71.0%) were women and the median overall age was 56.0 years. PFS of brain lesions was not significantly prolonged in SRS with TKI treatment group than in SRS without TKI group (17.0 months vs. 9.0 months, p=0.45). Local tumor control rate was 83.3% in the combination therapy group, and 61.5% in the SRS monotherapy group (p=0.23). There were no severe adverse events related with treatment in both groups. Conclusions : Therapeutic outcome of concurrent SRS and TKI treatment was not superior to SRS monotherapy, however, there was no additive adverse events related with combined treatment.

Low-dose Epidermal Growth Factor Receptor (EGFR)-Tyrosine Kinase Inhibition of EGFR Mutation-positive Lung Cancer: Therapeutic Benefits and Associations Between Dosage, Efficacy and Body Surface Area

  • Hirano, Ryosuke;Uchino, Junji;Ueno, Miho;Fujita, Masaki;Watanabe, Kentaro
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.17 no.2
    • /
    • pp.785-789
    • /
    • 2016
  • A key drug for treatment of EGFR mutation-positive non-small cell lung cancer is epidermal growth factor receptor-tyrosine kinase inhibitor (EGFR-TKI). While the dosage of many general anti-tumor drugs is adjusted according to the patient body surface area, one uniform dose of most TKIs is recommended regardless of body size. In many cases, dose reduction or drug cessation is necessary due to adverse effects. Disease control, however, is frequently still effective, even after dose reduction. In this study, we retrospectively reviewed the characteristics of 26 patients at Fukuoka University Hospital between January 2004 and January 2015 in whom the EGFR-TKI dose was reduced with respect to progression free survival and overall survival. There were 10 and 16 patients in the gefitinib group and the erlotinib group, respectively. The median progression-free survival in the gefitinib group and the erlotinib group was 22.4 months and 14.1 months, respectively, and the median overall survival was 30.5 months and 32.4 months, respectively. After stratification of patients by body surface area, the overall median progression-free survival was significantly more prolonged in the low body surface area (<1.45 m2) group (25.6 months) compared to the high body surface area (>1.45 m2) group (9.7 months) (p=0.0131). These results indicate that low-dose EGFR-TKI may sufficiently control disease without side effects in lung cancer patients with a small body size.