• Title/Summary/Keyword: Receptor protein

Search Result 2,359, Processing Time 0.03 seconds

Structural Aspects of GPCR-G Protein Coupling

  • Chung, Ka Young
    • Toxicological Research
    • /
    • v.29 no.3
    • /
    • pp.149-155
    • /
    • 2013
  • G protein-coupled receptors (GPCRs) are membrane receptors; approximately 40% of drugs on the market target GPCRs. A precise understanding of the activation mechanism of GPCRs would facilitate the development of more effective and less toxic drugs. Heterotrimeric G proteins are important molecular switches in GPCR-mediated signal transduction. An agonist-activated receptor interacts with specific sites on G proteins and promotes the release of GDP from the $G{\alpha}$ subunit. Because of the important biological role of the GPCR-G protein coupling, conformational changes in the G protein upon receptor coupling have been of great interest. One of the most important questions was the interface between the GPCR and G proteins and the structural mechanism of GPCR-induced G protein activation. A number of biochemical and biophysical studies have been performed since the late 80s to address these questions; there was a significant breakthrough in 2011 when the crystal structure of a GPCR-G protein complex was solved. This review discusses the structural aspects of GPCR-G protein coupling by comparing the results of previous biochemical and biophysical studies to the GPCR-G protein crystal structure.

Experimental Study on the Expression of Striatal Dopamine Receptors in the Rat Model of Parkinsonism (파킨슨씨병 모델 흰쥐에서 줄무늬체 도파민 수용체의 발현에 대한 연구)

  • Oh, Chang-Wan;Han, Dae Hee;Chung, Chun Kee;Cho, Sa-Sun;Park, Kyeong-Han;Kim, Yong-Sik;Park, Chan-Woong
    • Journal of Korean Neurosurgical Society
    • /
    • v.29 no.2
    • /
    • pp.155-166
    • /
    • 2000
  • This study was designed to investigate the underlying mechanisms for the temporal changes of the striatal dopamine D2 receptors in the rat model of parkinsonism. After injection of the 6-hydroxydopamine into the substantia nigra of adult rats, we measured the receptor binding capacity(Bmax), mRNA and protein of the D2 receptor at 2, 4 and 8 weeks. Following the lesion, mRNA and protein were elevated simultaneously on both sides of the striata. They showed more increase on the normal side at 2 and 4 weeks, and then they were almost equally abundant on both sides at 8 weeks. We also observed their increased production in the diffuse cortical and subcortical regions. The Bmax value also increased bilaterally in both striata, and was higher on the normal side at 2 weeks and then on the lesioned side at 4 and 8 weeks. These findings suggest that production of the striatal D2 receptor is regulated at the transcriptional level in this animal model. They also imply that this control may be mediated through a pathway which can have influence on the whole brain, rather than the local control of the dopamine content alone. The measured functional activity(Bmax) of the D2 receptor was not proportional to the amount of the receptor mRNA and proteins produced. This difference may be explained by the post-translational modification of the receptor proteins, which may be controlled by such factor as the local concentration of dopamine.

  • PDF

Production and Characterization of a Monoclonal Antibody against Human ${\beta}_2$-adrenergic receptor

  • Kang, Suk-Jo;Shin, Chan-Young;Song, Mi-Ryoung;Lee, Chung-Jae;Cheong, Jae-Hoon;Lee, Sang-Bong;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.5 no.4
    • /
    • pp.344-350
    • /
    • 1997
  • The purpose of the present study was to produce and characterize a monoclonal antibody against human ${\beta}_2$-adrenergic receptor. Male BALB/c mice were immunized with glutathione S-transferase (GST) fusion protein of the C-terminal portion of the human ${\beta}_2$-adrenergic receptor which was expressed in E.Coli. The immunized splenocytes were fused with myeloma SP2/0-Agl4 cells. The resulting hybridomas were screened for the production of a monoclonal antibody which can recognize human ${\beta}_2$-adrenergic receptor, and then subcloned by limiting dilution. The resulting monoclonal antibody was named as mAb$\beta$CO2. The mono-clonal antibody $\beta$CO2 was determined as IgM subtype and then purified by anti-mouse IgM-agarose affinity chromatography. The results of ELISA, Western blot, and immunocytochemistry showed that mAb$\beta$CO2 recognized human ${\beta}_2$-adrenergic receptor in the ${\beta}_2$-adrenergic receptor-GST fusion protein and human spider-moid carcinoma cell line A431 with highly specific immunoreactivity, The monoclonal antibody $\beta$CO2 may provide useful tools for the study of the $\beta$-adrenergic receptor of human and other species including rats.

  • PDF

Inhibitory Mechanism of Propranolol on the Effects of VIP in Peripheral Blood T-lymphocytes of Rat (흰쥐 말초혈액 T-림프구에서 Vasoactive Intestinal Polypeptide의 효과에 대한 Propranolol의 억제 기전)

  • Ahn, Young-Soo;Choo, Sung-Yee;Kang, Dong-Won;Lee, Sang-Hun
    • The Korean Journal of Pharmacology
    • /
    • v.31 no.2
    • /
    • pp.219-231
    • /
    • 1995
  • Vasoactive intestinal polypeptide(VIP) and ${\beta}-adrenergic$ agonists have immunomodultory effects on the peripheral blood T-lymphocytes of rat through their own receptors. Both of them utilize the same signal transduction pathway. That is, the stimulatory guanine nucleotide binding protein(G protein) mediates the receptor-adenylyl cyclase coupling, producing intracellular increase of cyclic adenosine monophosphate(cAMP). In the previous experiment, propranolol, a ${\beta}-adrenergic$ receptor blocker, inhibited the VIP-induced protein phosphorylation in lymphocytes. However, propranolol could not block the effect induced by forskolin. Therefore, this study was designed to elucidate the mechanism of the inhibitory action of propranolol on the effects of VIP. Using peripheral blood lymphocytes of rats, the effect of propranolol on the receptor binding characteristics of VIP was observed. And the effects of propranolol were compared to the effects of timolol on the cAMP increase induced by isoproterenol, VIP or forskolin. The results obtained are as follows. 1) Receptor binding study showed no significant differences in the affinity or density of VIP receptor between the control and propranolol-pretreated groups. 2) VIP-induced increase of cAMP was inhibited by propranolol, but not by timolol. 3) Both propranolol and timolol suppressed the isoproterenol-induced cAMP increase. 4) Propranolol also inhibited the histamine-induced cAMP increase. 5) Propranolol did not inhibit the increase of cAMP stimulated by forskolin. 6) Lidocaine did not block the VIP-induced cAMP increase. These results show that the inhibitory mechanism of propranolol is not related to ${\beta}-adrenergic$ receptor or its membrane stabilizing effect, and it is suggested that propranolol can block the effects of VIP by inhibiting the intermediate step between the VIP receptor and adenylyl cyclase.

  • PDF

Cloning and Characterization of a Gene Encoding $\gamma-Butyrolactone$ Autoregulator Receptor from Saccharopolyspora erythraea

  • LEE YONG-JIK;YEO SOO-HWAN;LEE IN SEON;LEE SAM-PIN;KITANI SHIGERU;NIHIRA TAKUYA;KIM HYUN SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.1
    • /
    • pp.77-83
    • /
    • 2006
  • A gene encoding a $\gamma-butyrolactone$ autoregulator receptor was cloned from Saccharopolyspora erythraea, and the biochemical characteristics, including the autoregulator specificity, were determined with the purified recombinant protein. Using primers designed for the conserved amino acid sequence of Streptomyces $\gamma-butyrolactone$ autoregulator receptors, a 120 bp S. erythraea DNA fragment was obtained by PCR. Southern and colony hybridization with the 120 bp fragment as a probe allowed to select a genomic clone of S. erythraea, pESG, harboring a 3.2 kb SacI fragment. Nucleotide sequencing analysis revealed a 615 bp open reading frame (ORF), showing moderate homology (identity, $31-34\%$; similarity, $45-47\%$) with the $\gamma-butyrolactone$ autoregulator receptors from Streptomyces sp., and this ORF was named seaR (Saccharopolyspora erythraea autoregulator receptor). The seaR/pET-3d plasmid was constructed to overexpress the recombinant SeaR protein (rSeaR) in Escherichia coli, and the rSeaR protein was purified to homogeneity by DEAE-Sephacel column chromatography, followed by DEAE-ion-exchange HPLC. The molecular mass of the purified rSeaR protein was 52 kDa by HPLC gel-filtration chromatography and 27 kDa by SDS-polyacrylamide gel electrophoresis, indicating that the rSeaR protein is present as a dimer. A binding assay with tritium-labeled autoregulators revealed that rSeaR has clear binding activity with a VB-C-type autoregulator as the most effective ligand, demonstrating for the first time that the erythromycin producer S. erythraea possesses a gene for the $\gamma-butyrolactone$autoregulator receptor.

The Ligand Occupancy of Endothelial Protein C Receptor Switches the Signaling Specificity of Thrombin from a Disruptive to a Protective Response in Endothelial Cells

  • Bae, Jong-Sup;Kim, Yong-Ung;Park, Moon-Ki
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2008.11a
    • /
    • pp.538-544
    • /
    • 2008
  • Activated protein C (APC) is thought to exert antiinflammatory activities through the endothelial protein C receptor (EPCR)-dependent cleavage of protease activated receptor 1 (PAR-1) in endothelial cells. Since thrombin cleaves PAR-1 with $\sim$3-4-orders of magnitude higher efficiency, and PAR-1 is a target for proinflammatory activities of thrombin, it is not understood how APC can elicit protective responses through the cleavage of PAR-1. In this study, we demonstrate that EPCR is associated with caveolin-1 in endothelial lipid rafts, but its occupancy by protein C leads to its dissociation from caveolin-1 and subsequent recruitment of PAR-1 to protective signaling pathways through the coupling of PAR-1 to Gi-protein. When EPCR is bound by protein C, the PAR-1-dependent protective response in endothelial cells can be mediated by either thrombin or APC. These results provide a new paradigm for understanding the mechanism through which PAR-1 and EPCR participate in cellular signaling events in endothelial cells.

  • PDF

Protein variation and involvement of insulin-like growth factor during embryonic development in the olive flounder Paralichthys olivaceus

  • Kim, Kang-Woong;Nam, Taek Jeong;Choi, Youn Hee
    • Fisheries and Aquatic Sciences
    • /
    • v.21 no.2
    • /
    • pp.4.1-4.5
    • /
    • 2018
  • Insulin-like growth factors (IGFs), along with IGF-binding protein and IGF receptor, are well-known regulators in the growth and survival of vertebrates. In this study, we investigated the involvement of IGFs and protein variation during embryonic development of the olive flounder (Paralichthys olivaceus). Morphological stages were divided into six main developments as blastula, gastrula, cephalization, cranial regionalization, tail lift, and hatch. During embryonic development, protein variation was investigated using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and electrospray ionization quadrupole time-of-flight mass spectrometry/mass spectrometry. In addition, the mechanism of signaling of IGF-I receptor was examined using immuno-blot analysis. We found marked changes in protein expression at four stages of embryonic development and identified proteins as belonging to the vitellogenin 2 family. As development progresses, expression of IGF-II, phosphotyrosine, and phospho-Akt increased, while expression of growth factor receptor-bound protein 2 (GRB2) and one of guanine-nucleotide-binding proteins (Ras) decreased. These results provide basic information on the IGF system in the embryonic development of the olive flounder.

In-silico Modeling of Chemokine Receptor CCR2 And CCR5 to Assist the Design of Effective and Selective Antagonists

  • Kothandan, Gugan;Cho, Seung Joo
    • Journal of Integrative Natural Science
    • /
    • v.5 no.1
    • /
    • pp.32-37
    • /
    • 2012
  • Chemokine receptor antagonists have potential applications in field of drug discovery. Although the chemokine receptors are G-protein-coupled receptors, their cognate ligands are small proteins (8 to 12 kDa), and so inhibiting the ligand/receptor interaction has been challenging. The application of structure-based in-silico methods to drug discovery is still considered a major challenge, especially when the x-ray structure of the target protein is unknown. Such is the case with human CCR2 and CCR5, the most important members of the chemokine receptor family and also a potential drug target. Herein, we review the success stories of combined receptor modeling/mutagenesis approach to probe the allosteric nature of chemokine receptor binding by small molecule antagonists for CCR2 and CCR5 using Rhodopsin as template. We also urged the importance of recently available ${\beta}2$-andrenergic receptor as an alternate template to guide mutagenesis. The results demonstrate the usefulness and robustness of in-silico 3D models. These models could also be useful for the design of novel and potent CCR2 and CCR5 antagonists using structure based drug design.

The N-terminal Region of the Porcine Epidemic Diarrhea Virus Spike Protein is Important for the Receptor Binding (PED 바이러스 Spike 단백질의 세포 수용체 결합 부위 확인)

  • Lee, Dong-Kyu;Cha, Se-Yeoun;Lee, Chang-Hee
    • Microbiology and Biotechnology Letters
    • /
    • v.39 no.2
    • /
    • pp.140-145
    • /
    • 2011
  • Porcine epidemic diarrhea virus (PEDV) infection causes acute enteritis with lethal watery diarrhea resulting in a high mortality rate in piglets. As with the other members of group 1 coronaviruses, PEDV also utilizes the host aminopeptidase N (APN) as the major cellular receptor for entry into target cells. The coronavirus spike (S) protein is known to interact with the cellular surface for viral attachment and the S1 domain of all characterized coronaviruses contains a receptor-binding domain (RBD) that mediates a specific high-affinity interaction with their respective cellular receptors. Although the RBDs of several coronaviruses have been mapped, the location of the PEDV RBD has to date not been defined. As a first step toward the identification of the region of the S protein of the PEDV that is critical for recognition with the cellular receptor, we generated a series of S1-truncated variants and examined their abilities to bind to the porcine APN (pAPN) receptor. Our data indicate that the N-terminus of the S1 domain is required for pAPN association. The results from the present study may assist in our understanding of the molecular interactions between the PEDV S protein and the pAPN receptor.

Multiple Regulation of Roundabout (Robo) Phosphorylation in a Heterologous Cell System

  • Park, Hwan-Tae
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.8 no.2
    • /
    • pp.111-115
    • /
    • 2004
  • Roundabout (Robo) is the transmembrane receptor for slit, the neuronal guidance molecule. In this study, the tyrosine phosphorylation of Robo was observed in Robo-transfected human embryonic kidney cells and developing rat brains, and found to be increased by the treatment with protein kinase A activator, forskolin. In contrast, protein kinase C activation by phorbol-12-myristate-13-acetate decreased the phosphorylation of Robo. Intracellular calcium was required for the tyrosine phosphorylation. Furthermore, the transfection of an Eph receptor tyrosine kinase dramatically enhanced the tyrosine phosphorylation. These findings indicate that the tyrosine phosphorylation of Robo is regulated by multiple mechanisms, and that Eph receptor kinases may play a role in the regulation of tyrosine phosphorylation of Robo in the rat brain.