• 제목/요약/키워드: Receptor protein

Search Result 2,368, Processing Time 0.026 seconds

Changes of the Level of G Protein ${\alpha}-subunit$ mRNA by Withdrawal from Morphine and Butorphanol

  • Oh, Sei-Kwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.4
    • /
    • pp.291-299
    • /
    • 2000
  • Morphine or butorphanol was continuously infused into cerebroventricle (i.c.v.) with the rate of $26\;nmol/{\mu}l/h$ for 3 days, and the withdrawal from opioid was rendered 7 hrs after the stopping of infusion. The expression of physical dependence produced by these opioids was evaluated by measuring the naloxone-precipitated withdrawal signs. The withdrawal signs produced in animals dependent on butorphanol (kappa opioid receptor agonist) were similar to those of morphine (mu opioid receptor agonist). Besides the behavioral modifications, opioid withdrawal affected G protein expression in the central nervous system. The G-protein ${\alpha}-subunit$ has been implicated in opioid tolerance and withdrawal. The effects of continuous infusion of morphine or butorphanol on the modulation of G protein ${\alpha}-subunit$ mRNA were investigated by using in situ hybridization study. In situ hybridization showed that the levels of $G\;{\alpha}s$ and $G\;{\alpha}i$ were changed during opioid withdrawal. Specifically, the level of $G\;{\alpha}s$ mRNA was decreased in the cortex and cerebellar granule layer during the morphine and butorphanol withdrawal. The level of $G\;{\alpha}i$ mRNA was decreased in the dentate gyrus and cerebellar granule layer during the morphine withdrawal. However, the level of $G\;{\alpha}i$ mRNA was significantly elevated during the butorphanol withdrawal. These results suggest that region-specific changes of G protein ${\alpha}-subunit$ mRNA were involved in the withdrawal from morphine and butorphanol.

  • PDF

Estrogen Induces CK2α Activation via Generation of Reactive Oxygen Species

  • Jeong, Soo-Yeon;Im, Suhn-Young
    • Biomedical Science Letters
    • /
    • v.25 no.1
    • /
    • pp.23-31
    • /
    • 2019
  • The protein kinase $CK2{\alpha}$ (formerly Casein Kinase II) is implicated in tumorigenesis and transformation. However, the mechanisms of $CK2{\alpha}$ activation in breast cancer have yet to be elucidated. This study investigated the mechanisms of $CK2{\alpha}$ activation in estrogen signaling. Estrogen increased reactive oxygen species (ROS) production, $CK2{\alpha}$ activity, and protein expression in estrogen receptor positive ($ER^+$) MCF-7 human breast cancer cells, which were inhibited by the antioxidant N-acetyl-L-cysteine. $H_2O_2$ enhanced $CK2{\alpha}$ activity and protein expression. Human epidermal growth factor (EGF) increased ROS production, $CK2{\alpha}$ activity and protein expression in EGF receptor 2 (HER2)-overexpressing MCF-7 (MCF-7 HER2) cells, but not in MCF-7 cells. Estrogen induced the phosphorylation of p38 mitogen-activated protein kinase (MAPK). The p38 inhibitor, SB202190, blocked estrogen-induced increases in ROS production, $CK2{\alpha}$ activity and $CK2{\alpha}$ protein expression. The data suggest that ROS/p38 MAPK is the key inducer of $CK2{\alpha}$ activation in response to estrogen or EGF.

Phosphorylation of Transcriptional Factor by Mitogen-activated Protein (MAP) Kinase Purified from Nucleus (핵 내에서 분리한 Mitogen-Activated Protein (MAP) Kinase의 Transcription Factor에 대한 인산화)

  • 김윤석;김소영;김태우
    • Biomedical Science Letters
    • /
    • v.2 no.2
    • /
    • pp.175-185
    • /
    • 1996
  • The mitogen-activated protein(MAP) kinase signal transduction pathway represents an important mechanism by which mitogen, such as serum and PMA, regulate cell proliferation and differentiation. Target substrates of the MAP kinase are located within several compartments containing plasma membranes and nucleus. We now report that serum addition induces proliferation of the P388 murine leukemia cell, but PMA does not, while both serum and PMA treatment cause translocation of the MAP kinase, mainly p42$^{mapk}$ isoform, from cytosol into the nucleus, which was monitored by immunoblot analysis using polyclonal anti-ERK1 antibodies. We investigated whether the MAP kinase was capable of phosphorylating c-Jun protein and GST-fusion proteins, the P562$^{kk}$N-terminal peptides (1-77 or 1-123 domain) of the T cell tyrosine kinase, using the partially purified MAP kinase by SP-sephadex C-50, phenyl superose and Mono Q column chromatography. We found that the partially purified MAP kinase was able to phosphorylate c-Jun protein and the GST-fusion protein expressed using E.coli DH5$\alpha$ which is transformed with pGEX-3Xb plasmid vector carrying of p562$^{kk}$N-terminal peptide-encoding DNA. These results imply that tyrosine kinase receptor/Ras/Raf/MAP kinase pathway is a major mechanism for mitogen-induced cell proliferation in P388 murine leukemia cell and that the various MAP kinase isoforms may have their own target substrates located in distinct subcellular compartments.

  • PDF

Induction of insulin receptor substrate-2 expression by Fc fusion to exendin-4 overexpressed in E. coli: a potential long-acting glucagon-like peptide-1 mimetic

  • Kim, Jae-Woo;Kim, Kyu-Tae;Ahn, You-Jin;Jeong, Hee-Jeong;Jeong, Hyeong-Yong;Ryu, Seung-Hyup;Lee, Seung-Yeon;Lee, Chang-Woo;Chung, Hye-Shin;Jang, Sei-Heon
    • BMB Reports
    • /
    • v.43 no.2
    • /
    • pp.146-149
    • /
    • 2010
  • Exendin-4 (Ex-4), a peptide secreted from the salivary glands of the Gila monster lizard, can increase pancreatic $\beta$-cell growth and insulin secretion by activating glucagon-like peptide-1 receptor. In this study, we expressed a fusion protein consisting of exendin-4 and the human immunoglobulin heavy chain (Ex-4/IgG-Fc) in E. coli and explored its potential therapeutic use for the treatment of insulin-resistant type 2 diabetes. Here, we show that the Ex-4/IgG-Fc fusion protein induces expression of insulin receptor substrate-2 in rat insulinoma INS-1 cells. Our findings therefore suggest that Ex-4/IgG-Fc overexpressed in E. coli could be used as a potential, long-acting glucagon-like peptide-1 mimetic.

Carnosic acid inhibits TLR4-MyD88 signaling pathway in LPS-stimulated 3T3-L1 adipocytes

  • Park, Mi-Young;Mun, Seong Taek
    • Nutrition Research and Practice
    • /
    • v.8 no.5
    • /
    • pp.516-520
    • /
    • 2014
  • BACKGROUND/OBJECTIVES: Carnosic acid (CA), found in rosemary (Rosemarinus officinalis) leaves, is known to exhibit anti-obesity and anti-inflammatory activities. However, whether its anti-inflammatory potency can contribute to the amelioration of obesity has not been elucidated. The aim of the current study was to investigate the effect of CA on Toll-like receptor 4 (TLR4) pathways in the presence of lipopolysaccharide (LPS) in 3T3-L1 adipocytes. MATERIALS/METHODS: 3T3-L1 adipocytes were treated with CA ($0-20{\mu}M$) for 1 h, followed by treatment with LPS for 30 min; mRNA expression of adipokines and protein expression of TLR4-related molecules were then measured. RESULTS: LPS-stimulated 3T3-L1 adipocytes showed elevated mRNA expression of tumor necrosis factor (TNF)-${\alpha}$, interleukin-6, and monocyte chemoattractant protein-1, and CA significantly inhibited the expression of these adipokine genes. LPS-induced up regulation of TLR4, myeloid differentiation factor 88, TNF receptor-associated factor 6, and nuclear factor-${\kappa}B$, as well as phosphorylated extracellular receptor-activated kinase were also suppressed by pre-treatment of 3T3-L1 adipocytes with CA. CONCLUSIONS: Results of this study suggest that CA directly inhibits TLR4-MyD88-dependent signaling pathways and decreases the inflammatory response in adipocytes.

β-Adrenergic Receptor and Insulin Resistance in the Heart

  • Mangmool, Supachoke;Denkaew, Tananat;Parichatikanond, Warisara;Kurose, Hitoshi
    • Biomolecules & Therapeutics
    • /
    • v.25 no.1
    • /
    • pp.44-56
    • /
    • 2017
  • Insulin resistance is characterized by the reduced ability of insulin to stimulate tissue uptake and disposal of glucose including cardiac muscle. These conditions accelerate the progression of heart failure and increase cardiovascular morbidity and mortality in patients with cardiovascular diseases. It is noteworthy that some conditions of insulin resistance are characterized by up-regulation of the sympathetic nervous system, resulting in enhanced stimulation of ${\beta}$-adrenergic receptor (${\beta}$AR). Overstimulation of ${\beta}$ARs leads to the development of heart failure and is associated with the pathogenesis of insulin resistance in the heart. However, pathological consequences of the cross-talk between the ${\beta}$AR and the insulin sensitivity and the mechanism by which ${\beta}$AR overstimulation promotes insulin resistance remain unclear. This review article examines the hypothesis that ${\beta}$ARs overstimulation leads to induction of insulin resistance in the heart.

β-arrestin Promotes c-Jun N-terminal Kinase Mediated Apoptosis via a GABABR·β-arrestin·JNK Signaling Module

  • Wu, Jin-Xia;Shan, Feng-Xiao;Zheng, Jun-Nian;Pei, Dong-Sheng
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.2
    • /
    • pp.1041-1046
    • /
    • 2014
  • Evidence is growing that the $GABA_B$ receptor, which belongs to the G protein-coupled receptor (GPCR) superfamily, is involved in tumorigenesis. Recent studies have shown that ${\beta}$-arrestin can serve as a scaffold to recruit signaling protein c-Jun N-terminal knase (JNK) to GPCR. Here we investigated whether ${\beta}$-arrestin recruits JNK to the $GABA_B$ receptor and facilitates its activation to affect the growth of cancer cells. Our results showed that ${\beta}$-arrestin expression is decreased in breast cancer cells in comparison with controls. ${\beta}$-arrestin could enhance interactions of the $GABA_BR{\cdot}{\beta}-arrestin{\cdot}JNK$ signaling module in MCF-7 and T-47D cells. Further studies revealed that increased expression of ${\beta}$-arrestin enhances the phosphorylation of JNK and induces cancer cells apoptosis. Collectively, these results indicate that ${\beta}$-arrestin promotes JNK mediated apoptosis via a $GABA_BR{\cdot}{\beta}-arrestin{\cdot}JNK$ signaling module.

Molecular Cloning and Tissue-specific Expression of the Melanocortin 4 Receptor Gene from Olive Flounder, Paralichthys olivaceus

  • Lee, Hye-Jung;Kim, Jong-Myoung
    • Fisheries and Aquatic Sciences
    • /
    • v.13 no.4
    • /
    • pp.263-271
    • /
    • 2010
  • G protein-coupled receptors (GPCR) constitute the largest superfamily of cell membrane receptors, mediating diverse signal-transduction pathways. The melanocortin 4 receptor (MC4R) has been of interest for its physiological role and size, one of the smallest among the GPCRs, which makes it a good model system for the structural study of GPCRs. To study the molecular structure and tissue-specific expression of MC4R in olive flounder (Paralichthys olivaceus), the full-length MC4R gene was obtained using PCR amplification of genomic DNA as well as cDNA synthesis. Sequence analysis of the gene indicates that 978 bp of the MC4R gene encodes 325 amino acids without introns. Sequence alignment with the MC4Rs from other fish shows the highest degree of identity (96%) between Paralichthys olivaceous and Verasper moseri, followed by Takifugu rubripes and Tetraodon nigroviridis (89%). RNA was isolated from various tissues to examine the tissue distribution of MC4R by using RT-PCR. The results showed major expression of MC4R in the liver, brain, and eye, which is consistent with the expression pattern in other fish belonging to the order Pleuronectiformes.

Changes in Adrenal Angiotensin II Receptors in Renin-dependent Hypertensive Rats

  • Lee, Sung-Hou;Lee, Byung-Ho;Shin, Hwa-Sup
    • Archives of Pharmacal Research
    • /
    • v.18 no.3
    • /
    • pp.169-172
    • /
    • 1995
  • The changes in blood pressure may relate to the alterations of the responsiveness to vasoconstrictors and vasodilators, and these alterations can arise the modifications in the properties of angiotensin II (AII) receptor. In order to examine the changes of AII receptor in the hypertensive mechanism of renin-dependent hypertensive rats (RHRs; two-kidney, one-ligated type), we compared the equilibrium binding characteristics of $[^3H]$All in adrenal cortex and medulla from RHRs and normotensive rats. The dissociation constants of AII binding in both tissues of RHRs were very similar to those in the respective tissue of normotensive rats. However, the maximum binding was increased from 805 to 1050 fmole/mg protein in the adrenal cortex of RHRs, and decreased from 172 to 126 fmole/mg protein in the adrenal medulla of RHRs. These results imply that the up- and down-regulation of the All receptor population on the cell surface of adrenal glands from RHRs are consorted with the elevation of blood pressure and the activation of renin-angiotensin system.

  • PDF

Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis

  • Kim, Hyeonhui;Fang, Sungsoon
    • Laboraroty Animal Research
    • /
    • v.34 no.4
    • /
    • pp.140-146
    • /
    • 2018
  • Though bile acids have been well known as digestive juice, recent studies have demonstrated that bile acids bind to their endogenous receptors, including Farnesoid X receptor (FXR) and G protein-coupled bile acid receptor 1 (GPBAR1; TGR5) and serve as hormone to control various biological processes, including cholesterol/bile acid metabolism, glucose/lipid metabolism, immune responses, and energy metabolism. Deficiency of those bile acid receptors has been reported to induce diverse metabolic syndromes such as obesity, hyperlipidemia, hyperglycemia, and insulin resistance. As consistent, numerous studies have reported alteration of bile acid signaling pathways in type II diabetes patients. Interestingly, bile acids have shown to activate TGR5 in intestinal L cells and enhance secretion of glucagon-like peptide 1 (GLP-1) to potentiate insulin secretion in response to glucose. Moreover, FXR has been shown to crosstalk with TGR5 to control GLP-1 secretion. Altogether, bile acid receptors, FXR and TGR5 are potent therapeutic targets for the treatment of metabolic diseases, including type II diabetes.