• 제목/요약/키워드: Receptor interaction

검색결과 472건 처리시간 0.029초

유동장내 길이가 다른 두 개의 리간드가 부착된 입자-세포간 상호작용 (Interaction between Particle with Dual Ligand and Cell under Flow)

  • 윤정현;이세영
    • 대한의용생체공학회:의공학회지
    • /
    • 제43권2호
    • /
    • pp.71-80
    • /
    • 2022
  • The interaction between dual-ligand decorated particle-based delivery system and target cell under shear flow is predicted using probability model developed. We assumed the two kinds of ligand are decorated on the surface of the particle with 10% length difference. Fixed with other biophysical parameters, a study on the particle-cell interaction for the different non-specific interaction parameter is performed. To induce the firm adhesion, short ligand-receptor should be engaged. Also, it is shown that the rational design of ligand-receptor interaction, including receptor number, specific interaction parameter, kinds of ligand-receptor, etc., should be considered.

Protein-Protein Interaction Analysis of KiSS1-Derived Peptide Receptor with Kisspeptin-10 and Kisspeptin-15

  • Nagarajan, Santhosh Kumar
    • 통합자연과학논문집
    • /
    • 제11권1호
    • /
    • pp.9-13
    • /
    • 2018
  • KiSS1-derived peptide receptor, a GPCR protein, binds with the hormone Kisspeptin plays a major role in the neuroendocrine regulation of reproduction. It is important in the onset of puberty and triggers the release of gonadotrophin-releasing hormone. It is a potential drug target for the disorders related to GnRH, hence, analysing the structural features of the receptor becomes important. The three dimensional of the receptor modelled in a previous study was utilised. In this study, we have analysed the protein - protein interaction of the receptor with Kisspeptin 10 and 15. The study revealed the important residues which are involved in the interaction. The result of this study could be helpful in understanding the mechanism of Kiss1 receptor activation and the pathophysiology of the disorders related to the receptor.

Direct and functional interaction between dopamine D2 receptor and ALY

  • Yang, Jee-Hyeo;Kim, Hyun-Jin;Cheong, Da-Woon;Kim, Kyeong-Man
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-2
    • /
    • pp.89.1-89.1
    • /
    • 2003
  • The signaling pathway of dopamine D$_2$ receptor was studied using yeast two-hybrid system. The 3rd cytoplasmic loop of rat D$_2$ receptor was fond to interact with ALY. The interaction in the yeast was observed only with the 3rd cytoplasmic loop of D$_2$ receptor but not with that of D$_3$ or D$_4$ dopamine receptor. The interaction between two proteins was also confirmed by GST pull-down assay. Co-expression of D$_2$ receptor and ALY enhanced the expression of Lef-1 promoter in C6 cells and the promoter of D$_2$ dopamine receptor itself.

  • PDF

Platform Technologies for Research on the G Protein Coupled Receptor: Applications to Drug Discovery Research

  • Lee, Sung-Hou
    • Biomolecules & Therapeutics
    • /
    • 제19권1호
    • /
    • pp.1-8
    • /
    • 2011
  • G-protein coupled receptors (GPCRs) constitute an important class of drug targets and are involved in every aspect of human physiology including sleep regulation, blood pressure, mood, food intake, perception of pain, control of cancer growth, and immune response. Radiometric assays have been the classic method used during the search for potential therapeutics acting at various GPCRs for most GPCR-based drug discovery research programs. An increasing number of diverse small molecules, together with novel GPCR targets identified from genomics efforts, necessitates the use of high-throughput assays with a good sensitivity and specificity. Currently, a wide array of high-throughput tools for research on GPCRs is available and can be used to study receptor-ligand interaction, receptor driven functional response, receptor-receptor interaction,and receptor internalization. Many of the assay technologies are based on luminescence or fluorescence and can be easily applied in cell based models to reduce gaps between in vitro and in vivo studies for drug discovery processes. Especially, cell based models for GPCR can be efficiently employed to deconvolute the integrated information concerning the ligand-receptor-function axis obtained from label-free detection technology. This review covers various platform technologies used for the research of GPCRs, concentrating on the principal, non-radiometric homogeneous assay technologies. As current technology is rapidly advancing, the combination of probe chemistry, optical instruments, and GPCR biology will provide us with many new technologies to apply in the future.

Antiestrogen Interaction with Estrogen Receptors and Additional Antiestrogen Binding sites in Human Breast Cancer MCF-7 Cells

  • Ahn, Mee-Ryung;Sheen, Yhun-Yhong
    • Archives of Pharmacal Research
    • /
    • 제20권6호
    • /
    • pp.579-585
    • /
    • 1997
  • To gain further insight into the mechanism of action of antiestrogens, we examined the interaction of antiestrogen with the estrogen receptor system and with estrogen- noncompetable antiestrogen binding sites. In addition to binding directly to the estrogen receptor, antiestrogens can be found associated with binding sites that are distinct from the estrogen receptor. In contrast to the restriction of estrogen receptors to estrogen target cells, such as those of uterus and mammary glands, antiestrogen binding sites are present in equal amounts in estrogen receptor-positive and -negative human breast cancer cell lines, such as MCF-7, T47D, and MDA-MB-231 that differ markedly in their sensitivity to antiestrogens. In order to gain greater insight into the role of these antiestrogen binding sites in the action of antiestrogens, we have examined the biopotency of different antiestrogens for the antiestrogen binding sites and that is CI628 > tamoxifen > trans-hydroxy tamoxifen > CI628M > H1285 > LY117018. This order of affinities does not parallel the affinity of these compounds for the estrogen receptor nor the potency of these compounds as antiestrogens. Indeed, compounds with high affinity for the estrogen receptor and greatest antiestrogenic potency have low affinities for these antiestrogen binding sites. Antiestrogenic potency correlates best with estrogen receptor affinity and not with affinity for antiestrogen binding sites. In summary, our findings suggested that interaction with the estrogen receptor is most likely the mechanism through which antiestrogens evoke their growth inhibitory effects.

  • PDF

Mechanistic ligand-receptor interaction model: operational model of agonism

  • Kim, Hyungsub;Lim, Hyeong-Seok
    • Translational and Clinical Pharmacology
    • /
    • 제26권3호
    • /
    • pp.115-117
    • /
    • 2018
  • This tutorial explains the basic principles of mechanistic ligand-receptor interaction model, which is an operational model of agonism. A growing number of agonist drugs, especially immune oncology drugs, is currently being developed. In this tutorial, time-dependent ordinary differential equation for simple $E_{max}$ operational model of agonism was derived step by step. The differential equation could be applied in a pharmacodynamic modeling software, such as NONMEM, for use in non-steady state experiments, in which experimental data are generated while the interaction between ligand and receptor changes over time. Making the most of the non-steady state experimental data would simplify the experimental processes, and furthermore allow us to identify more detailed kinetics of a potential drug. The operational model of agonism could be useful to predict the optimal dose for agonistic drugs from in vitro and in vivo animal pharmacology experiments at the very early phase of drug development.

Direct and functional interaction between dopamine D2 receptor and ALY

  • Yang, Ji-Hye;Cheong, Da-Woon;Seo, Hyung-Ju;Kim, Moon-Soo;Kim, Kyeong-Man
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2002년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2
    • /
    • pp.270.1-270.1
    • /
    • 2002
  • The signaling pathway of D2 dopamine receptor was studied using yeaslt two-hybrid system.. The 3rd cytoplasmic loop of rat D2 dopamine receptor was used to screen the cDNA library of mouse brain. and ALY was found to interact with it. The interaction in the yeast was observed only with the 3rd cytoplasmic loop of D2 dopamine receptor but not with that of D3 or D4 dopamine receptor. The interaction between two proteins was also confirmed by GST pull-down assay. (omitted)

  • PDF

Interaction between the p75 neurotrophin receptor and a novel adaptor protein

  • Lee, Yun-Hee;Yu, Ji-Hee;Cho, Jung-Sun;Park, Han-Jeong;Lee, Seung-Pyo;Paik, Ki-Suk;Chang, Mi-Sook
    • International Journal of Oral Biology
    • /
    • 제33권2호
    • /
    • pp.71-76
    • /
    • 2008
  • The neurotrophin plays an important role in the development, differentiation and survival of the nervous system in vertebrates. It exerts its cellular effects through two different receptors, the Trk receptor tyrosine kinase neurotrophin receptor and the p75 neurotrophin receptor, a member of the tumor necrosis factor receptor superfamily. Trk and p75 neurotrophin receptors utilize specific target proteins to transmit signals into the cell. An ankyrin-rich membrane spanning protein (ARMS) was identified as a new p75 interacting protein and serves as a novel downstream target of p75 neurotrophin receptor. We sought to delineate the interaction between p75 and ARMS by deletion constructs of p75 and green fluorescent protein (GFP)-tagged ARMS. We examined the interaction between these two proteins after overexpressing them in HEK-293 cells. Using both Western blot analysis and immunocytochemistry followed by confocal laser scanning microscopy, we found out that the intracellular domain of the p75 neurotrophin receptor was important for the interaction with ARMS. The results from this study suggest that ARMS may play an important role for mediating the signals from p75 neurotrophin receptor into the cell.

Production rind Characterization of the Polyclonal Anti-peptide Antibody for $\beta$-adrenergic Receptor

  • Kim, Hee-Jin;Shin, Chan-Young;Sang Bong lee;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • 제2권4호
    • /
    • pp.303-309
    • /
    • 1994
  • The analysis of membrane receptors for hormones and neurotransmitters has progressed considerably by pharmacological and biochemical means and more recently through the use of specific antibodies. Two kinds of antibodies could be produced, one is from synthetic peptides and the other from proteins such as purified receptor. Anti-peptide antibodies gave some advantages; epitope is evident and also receptor purification in quantity is not prerequisite. It can be also applied to the study of receptor structure-activity relationship. The purpose of the present study was 1) to produce and characterize a polyclonal antibody against a synthetic $\beta$2-adrenergic receptor peptide(Phe-Gly-Asn-Phe-Trp-Cys-Phe-Trp-Thr-Ser-Ile-Asp-Val-Leu) and 2) to determine the effects of this antibody on the $\beta$-adrenergic receptor ligand interaction. The peptide sequence contains an amino acid residue such as Asp-113 which was identified as one of important component for receptor-ligand interaction in site-directed mutagenesis studies. Production of antibody was performed by immunization of rabbits through popliteal lymph node with the peptide coupled with Keyhole Limpet Hemocyanin (KLH). The titer of antibody against this peptide was 1 : 1000. The anti-peptide antibody was able to detect a 67 kDa protein band in western blot corresponding to the molecular weight of the $\beta$-adrenergic receptor in partially purified receptor fraction derived from guinea pig lung. The antisera inhibited the specific binding of [$^3$H]dihydroalprenolol to $\beta$-adrenergic receptor in a concentration-dependent manner. The results from this study suggest that the peptide sequence selected in the present study is important for the receptor ligand interaction.

  • PDF

페닐티오우레아 유도체와 카테콜 산화효소와의 상호작용에 대한 분자역학적 모의실험 (The Interaction of Phenylthiourea Derivatives as Catechol Oxidase Inhibitors by Molecular Mechanics Simulation)

  • 박경래
    • 약학회지
    • /
    • 제60권2호
    • /
    • pp.78-84
    • /
    • 2016
  • N-Phenylthiourea derivatives and catechol oxidase receptor complex was studied using molecular mechanics method. The starting structure was adopted from the protein databank and the calculation of energy minimization and molecular dynamics was performed with AMBER package. The molecular dynamics showed that the simulation time span of 20 ns was long enough to observe the interaction profile and stationary ligand-receptor configuration in the complex. The conformation of the ligand was related to the interaction to the receptor and the efficacy was also interpreted in this context.