DOI QR코드

DOI QR Code

Interaction between Particle with Dual Ligand and Cell under Flow

유동장내 길이가 다른 두 개의 리간드가 부착된 입자-세포간 상호작용

  • Yoon, Jung Hyun (Division of Biomedical Engineering, Yonsei University) ;
  • Lee, Sei Young (Division of Biomedical Engineering, Yonsei University)
  • 윤정현 (연세대학교 미래캠퍼스 의공학부) ;
  • 이세영 (연세대학교 미래캠퍼스 의공학부)
  • Received : 2021.12.01
  • Accepted : 2022.03.02
  • Published : 2022.04.30

Abstract

The interaction between dual-ligand decorated particle-based delivery system and target cell under shear flow is predicted using probability model developed. We assumed the two kinds of ligand are decorated on the surface of the particle with 10% length difference. Fixed with other biophysical parameters, a study on the particle-cell interaction for the different non-specific interaction parameter is performed. To induce the firm adhesion, short ligand-receptor should be engaged. Also, it is shown that the rational design of ligand-receptor interaction, including receptor number, specific interaction parameter, kinds of ligand-receptor, etc., should be considered.

Keywords

Acknowledgement

이 논문은 2021년도 정부(교육부)의 재원으로 한국연구재단의 지원을 받은 4단계 BK21 사업(Education and Research Center of NBIT-integrated Medical System for Personalized Healthcare-II21SS7606007)의 지원을 받아 수행됨.

References

  1. Ferrari M. Cancer nanotechnology: opportunities and challenges. Nature reviews cancer. 2005;5(3):161-71. https://doi.org/10.1038/nrc1566
  2. Peer D, Karp JM, Hong S, Farokhzad OC, Margalit R, Langer R. Nanocarriers as an emerging platform for cancer therapy. Nature nanotechnology. 2007;2(12):751-60. https://doi.org/10.1038/nnano.2007.387
  3. Champion JA, Katare YK, Mitragotri S. Particle shape: a new design parameter for micro-and nanoscale drug delivery carriers. Journal of controlled release. 2007;121(1-2):3-9. https://doi.org/10.1016/j.jconrel.2007.03.022
  4. Champion JA, Mitragotri S. Shape induced inhibition of phagocytosis of polymer particles. Pharmaceutical research. 2009;26(1):244-9. https://doi.org/10.1007/s11095-008-9626-z
  5. Lee S-Y, Ferrari M, Decuzzi P. Design of bio-mimetic particles with enhanced vascular interaction. Journal of biomechanics. 2009;42(12):1885-90. https://doi.org/10.1016/j.jbiomech.2009.05.012
  6. Kolhar P, Anselmo AC, Gupta V, Pant K, Prabhakarpandian B, Ruoslahti E, et al. Using shape effects to target antibody-coated nanoparticles to lung and brain endothelium. Proceedings of the National Academy of Sciences. 2013;110(26):10753-8. https://doi.org/10.1073/pnas.1308345110
  7. Lee S-Y, Ferrari M, Decuzzi P. Shaping nano-/micro-particles for enhanced vascular interaction in laminar flows. Nanotechnology. 2009;20(49):495101. https://doi.org/10.1088/0957-4484/20/49/495101
  8. Lee T-R, Choi M, Kopacz AM, Yun S-H, Liu WK, Decuzzi P. On the near-wall accumulation of injectable particles in the microcirculation: smaller is not better. Scientific reports. 2013;3(1):1-8.
  9. Gref R, Minamitake Y, Peracchia MT, Trubetskoy V, Torchilin V, Langer R. Biodegradable long-circulating polymeric nanospheres. Science. 1994;263(5153):1600-3. https://doi.org/10.1126/science.8128245
  10. Eniola AO, Rodgers SD, Hammer DA. Characterization of biodegradable drug delivery vehicles with the adhesive properties of leukocytes. Biomaterials. 2002;23(10):2167-77. https://doi.org/10.1016/S0142-9612(01)00349-0
  11. Eniola AO, Willcox PJ, Hammer DA. Interplay between rolling and firm adhesion elucidated with a cell-free system engineered with two distinct receptor-ligand pairs. Biophysical journal. 2003;85(4):2720-31. https://doi.org/10.1016/S0006-3495(03)74695-5
  12. Farokhzad OC, Jon S, Khademhosseini A, Tran T-NT, LaVan DA, Langer R. Nanoparticle-aptamer bioconjugates: a new approach for targeting prostate cancer cells. Cancer research. 2004;64(21):7668-72. https://doi.org/10.1158/0008-5472.CAN-04-2550
  13. Yoon JH, Kim DK, Na M, Lee SY. Multi-ligand functionalized particle design for cell targeting and drug delivery. Biophysical chemistry. 2016;213:25-31. https://doi.org/10.1016/j.bpc.2016.03.006
  14. Csizmar CM, Petersburg JR, Perry TJ, Rozumalski L, Hackel BJ, Wagner CR. Multivalent ligand binding to cell membrane antigens: defining the interplay of affinity, valency, and expression density. Journal of the American Chemical Society. 2018;141(1):251-61. https://doi.org/10.1021/jacs.8b09198
  15. McKenzie M, Ha SM, Rammohan A, Radhakrishnan R, Ramakrishnan N. Multivalent binding of a ligand-coated particle: role of shape, size, and ligand heterogeneity. Biophysical journal. 2018;114(8):1830-46. https://doi.org/10.1016/j.bpj.2018.03.007
  16. Decuzzi P, Ferrari M. Design maps for nanoparticles targeting the diseased microvasculature. Biomaterials. 2008;29(3):377-84. https://doi.org/10.1016/j.biomaterials.2007.09.025
  17. Bell GI, Dembo M, Bongrand P. Cell adhesion. Competition between nonspecific repulsion and specific bonding. Biophysical journal. 1984;45(6):1051-64. https://doi.org/10.1016/S0006-3495(84)84252-6
  18. Piper JW, Swerlick RA, Zhu C. Determining force dependence of two-dimensional receptor-ligand binding affinity by centrifugation. Biophysical journal. 1998;74(1):492-513. https://doi.org/10.1016/S0006-3495(98)77807-5
  19. Zhu C, Williams TE. Modeling concurrent binding of multiple molecular species in cell adhesion. Biophysical journal. 2000;79(4):1850-7. https://doi.org/10.1016/S0006-3495(00)76434-4
  20. Saul JM, Annapragada AV, Bellamkonda RV. A dual-ligand approach for enhancing targeting selectivity of therapeutic nanocarriers. Journal of controlled release. 2006;114(3):277-87. https://doi.org/10.1016/j.jconrel.2006.05.028
  21. Coombs D, Dembo M, Wofsy C, Goldstein B. Equilibrium thermodynamics of cell-cell adhesion mediated by multiple ligand-receptor pairs. Biophysical journal. 2004;86(3):1408-23. https://doi.org/10.1016/S0006-3495(04)74211-3
  22. Goldman A, Cox RG, Brenner H. Slow viscous motion of a sphere parallel to a plane wall-II Couette flow. Chemical engineering science. 1967;22(4):653-60. https://doi.org/10.1016/0009-2509(67)80048-4
  23. Patel KD, Nollert MU, McEver RP. P-selectin must extend a sufficient length from the plasma membrane to mediate rolling of neutrophils. The Journal of Cell Biology. 1995;131(6):1893-902. https://doi.org/10.1083/jcb.131.6.1893
  24. Staunton DE, Dustin ML, Erickson HP, Springer TA. The arrangement of the immunoglobulin-like domains of ICAM-1 and the binding sites for LFA-1 and rhinovirus. Cell. 1990;61(2):243-54. https://doi.org/10.1016/0092-8674(90)90805-o
  25. Fu C, Tong C, Wang M, Gao Y, Zhang Y, Lu S, et al. Determining β2-integrin and intercellular adhesion molecule 1 binding kinetics in tumor cell adhesion to leukocytes and endothelial cells by a gas-driven micropipette assay. Journal of Biological Chemistry. 2011;286(40):34777-87. https://doi.org/10.1074/jbc.M111.281642
  26. Zhang F, Marcus WD, Goyal NH, Selvaraj P, Springer TA, Zhu C. Two-dimensional kinetics regulation of αLβ2-ICAM-1 interaction by conformational changes of the αL-inserted domain. Journal of Biological Chemistry. 2005;280(51):42207-18. https://doi.org/10.1074/jbc.M510407200
  27. Lamberti G, Tang Y, Prabhakarpandian B, Wang Y, Pant K, Kiani MF, et al. Adhesive interaction of functionalized particles and endothelium in idealized microvascular networks. Microvascular research. 2013;89:107-14. https://doi.org/10.1016/j.mvr.2013.03.007
  28. Morozov V, Morozova TY. What does a protein molecule look like? Comments on molecular and cellular biophysics. 1990;6(4):249-70.
  29. Decuzzi P, Ferrari M. The role of specific and non-specific interactions in receptor-mediated endocytosis of nanoparticles. Biomaterials. 2007;28(18):2915-22. https://doi.org/10.1016/j.biomaterials.2007.02.013