• Title/Summary/Keyword: Receptor binding

Search Result 1,408, Processing Time 0.038 seconds

Development of transgenic disease-resistance root stock for growth of watermelon.(oral)

  • S.M. Cho;Kim, J.Y.;J.E. Jung;S.J. Mun;S.J. Jung;Kim, K.S.;Kim, Y.C.;B.H. Cho
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.65.2-65
    • /
    • 2003
  • To protect the plant against several soil-borne pathogens, we are currently constructing disease-resistant transgenic root stock for the growth of cucurbitaceae vegetable plants, watermelon and gourd. We made a watermelon cDNA library from Cladosporium cucumerinum-Infected leaves for substractive hybriazation and differential screening. We isolated the several pathogen inducible cDNA clones, such as caffeoyl-CoA-methyltransferase, LAA induced protein, receptor-like kinase homolog, hydroxyproline-rich glycoprotein, catalase, calmodulin binding protein, mitochondrial ATPase beta subunit, methyl tRNA synthetase and WRKY transcription factors. We previously obtained CaMADS in pepper and galactinol synthase ( CsGolS) in cucumber that were confirmed to be related with disease-resistance. CaMADS and CsGolS2 were transformed into the inbred line 'GO701-2' gourd, the inbred line '6-2-2' watermelon and the Kong-dye watermelon by Agrobacterium tumerfaciens LBA4404. Plant growth regulators (zeatin, BAP and IAA) were used for shoot regeneration and root induction for optimal condition. Putative transgenic plants were selected in medium containing 100mg/L kanamycin and integration of the CaMADS and CsGO/S2 into the genomic DNA were demonstrated by the PCR analysis. We isolated major soil-borne pathogens, such as Monosporascus cannonballus, Didymella bryoniae, Cladosporium cuvumerinum from the cultivation area of watermelon or root stock, and successfully established artificial inoculation method for each pathogen. This work was supported by a grant from BioGreen 21 program, Rural Development Administration, Republic of Korea.

  • PDF

Comparison of growth performance and related gene expression of muscle and fat from Landrace, Yorkshire, and Duroc and Woori black pigs

  • Bosung Kim;Yejin Min;Yongdae Jeong;Sivasubramanian Ramani;Hyewon Lim;Yeonsu Jo;Woosang Kim;Yohan Choi;Sungkwon Park
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.160-174
    • /
    • 2023
  • The purpose of this study was to compare marbling score, meat quality, juiciness, sarcomere length, and skeletal muscle satellite cell (SMSC) growth and related gene expression between Woori black pig (WB) and the Landrace, Yorkshire, and Duroc (LYD) crossbreed at different body weights (b.w.). WB was developed to improve meat quality and growth efficiency by crossbreeding Duroc with Korean native black pig. A total of 24 pigs were sacrificed when their b.w. reached about 50, 75, 100, and 120 kg. SMSC were isolated from the femoris muscles, and muscle and adipose tissues were sampled from the middle and the subcutaneous part of the femoris of hind legs, respectively. Expression levels of genes including Myoblast determination protein 1 (MyoD), Paired box gene 3 (Pax3), Myosin heavy chain (MyHC), and Myogenin, which are responsible for the growth and development of SMSC, were higher in LYD than the WB. Muscle growth inhibitor myostatin (MSTN), however, was expressed more in WB compared to LYD (p < 0.01). Numbers of SMSC extracted from femoris muscle of LYD at 50, 75, 100, and 120 kg b.w. were 8.5 ± 0.223, 8.6 ± 0.245, 7.2 ± 0.249, and 10.9 ± 0.795, and those from WB were 6.2 ± 0.32, 6.2 ± 0.374, 5.3 ± 0.423, and 17.1 ± 0.315, respectively. Expression of adipogenic genes in adipose tissue including CCAAT/enhancer-binding protein (CEBP)-β, peroxisome proliferator activated receptor (PPAR)-γ, and fatty acid synthase (FASN), were greater in WB when compared with LYD (p < 0.01). Results from the current study suggest that different muscle cell numbers between 2 different breeds might be affected by related gene expression and this warrants further investigation on other growth factors regulating animal growth and development.

Anti-Obesity Effects of Menthae Herba Hydrosol on High-Fat Diet Induced Obese Mice (고지방 식이로 유도된 비만 생쥐에서 박하 Hydrosol의 항비만 효과)

  • Soo-Min Choi;So-Young Kim;Young-Jun Kim;Chang-Hoon Woo;Mi-Ryeo Kim;Hee-Duk An
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.33 no.3
    • /
    • pp.33-46
    • /
    • 2023
  • Objectives We investigated anti-obesity effects of Menthae Herba hydrosol in obese mice. Methods Animals were divided into four groups, and treatments were performed for 7 weeks. After the treatment, serum lipid profiles, weight and pathological morphology in liver, kidney, adipose tissue were measured. Also, hepatic protein and gene expression levels of lipid metabolism-related factors were analyzed. Results Body weight was decreased in P3% group. In P1% (group fed high-fat diet and 1% Menthae Herba hydrosol) and P3% (group fed high-fat diet and 3% Menthae Herba hydrosol) group, weight of white adipose tissue, serum levels of triglyceride and blood urea nitrogen were decreased, and weight of muscle was increased. Also, liver, kidney and epididymal adipocyte size were reduced in P1% and P3% group. Adenosine monophosphate-activated protein kinase was increased and sterol regulatory element binding protein-1c (SREBP-1c) was decreased in P3% group. mPeroxisome proliferator-activator receptor-γ, mMonocyte chemotactic protein-1 were decreased in P1% and P3% group. In P3% group, mSREBP-1c was decreased and mCarnitine palmitoyl transferase-1 was increased. And mUncoupling protein 1 in brown adipose tissue was increased. Conclusions These results suggest that Menthae Herba hydrosol has a worthy effect on anti-obesity.

Licochalcone H Targets EGFR and AKT to Suppress the Growth of Oxaliplatin -Sensitive and -Resistant Colorectal Cancer Cells

  • Seung-On Lee;Mee-Hyun Lee;Ah-Won Kwak;Jin-Young Lee;Goo Yoon;Sang Hoon Joo;Yung Hyun Choi;Jin Woo Park;Jung-Hyun Shim
    • Biomolecules & Therapeutics
    • /
    • v.31 no.6
    • /
    • pp.661-673
    • /
    • 2023
  • Treatment of colorectal cancer (CRC) has always been challenged by the development of resistance. We investigated the antiproliferative activity of licochalcone H (LCH), a regioisomer of licochalcone C derived from the root of Glycyrrhiza inflata, in oxaliplatin (Ox)-sensitive and -resistant CRC cells. LCH significantly inhibited cell viability and colony growth in both Ox-sensitive and Ox-resistant CRC cells. We found that LCH decreased epidermal growth factor receptor (EGFR) and AKT kinase activities and related activating signaling proteins including pEGFR and pAKT. A computational docking model indicated that LCH may interact with EGFR, AKT1, and AKT2 at the ATP-binding sites. LCH induced ROS generation and increased the expression of the ER stress markers. LCH treatment of CRC cells induced depolarization of MMP. Multi-caspase activity was induced by LCH treatment and confirmed by Z-VAD-FMK treatment. LCH increased the number of sub-G1 cells and arrested the cell cycle at the G1 phase. Taken together LCH inhibits the growth of Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, and inducing ROS generation and ER stress-mediated apoptosis. Therefore, LCH could be a potential therapeutic agent for improving not only Ox-sensitive but also Ox-resistant CRC treatment.

Comprehensive Evaluation System for Post-Metabolic Activity of Potential Thyroid-Disrupting Chemicals

  • Yurim Jang;Ji Hyun Moon;Byung Kwan Jeon;Ho Jin Park;Hong Jin Lee;Do Yup Lee
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.10
    • /
    • pp.1351-1360
    • /
    • 2023
  • Endocrine-disrupting chemicals (EDCs) are compounds that disturb hormonal homeostasis by binding to receptors. EDCs are metabolized through hepatic enzymes, causing altered transcriptional activities of hormone receptors, and thus necessitating the exploration of the potential endocrine-disrupting activities of EDC-derived metabolites. Accordingly, we have developed an integrative workflow for evaluating the post-metabolic activity of potential hazardous compounds. The system facilitates the identification of metabolites that exert hormonal disruption through the integrative application of an MS/MS similarity network and predictive biotransformation based on known hepatic enzymatic reactions. As proof-of-concept, the transcriptional activities of 13 chemicals were evaluated by applying the in vitro metabolic module (S9 fraction). Identified among the tested chemicals were three thyroid hormone receptor (THR) agonistic compounds that showed increased transcriptional activities after phase I+II reactions (T3, 309.1 ± 17.3%; DITPA, 30.7 ± 1.8%; GC-1, 160.6 ± 8.6% to the corresponding parents). The metabolic profiles of these three compounds showed common biotransformation patterns, particularly in the phase II reactions (glucuronide conjugation, sulfation, GSH conjugation, and amino acid conjugation). Data-dependent exploration based on molecular network analysis of T3 profiles revealed that lipids and lipid-like molecules were the most enriched biotransformants. The subsequent subnetwork analysis proposed 14 additional features, including T4 in addition to 9 metabolized compounds that were annotated by prediction system based on possible hepatic enzymatic reaction. The other 10 THR agonistic negative compounds showed unique biotransformation patterns according to structural commonality, which corresponded to previous in vivo studies. Our evaluation system demonstrated highly predictive and accurate performance in determining the potential thyroid-disrupting activity of EDC-derived metabolites and for proposing novel biotransformants.

Cucumber (Cucumis sativus L.) Fruit and Combination with Losartan Attenuate the Elevation of Blood Pressure in Hypertensive Rats Induced by Angiotensin II

  • Tomi Hendrayana;Klaudia Yoana;I Ketut Adnyana;Elin Yulinah Sukandar
    • Journal of Pharmacopuncture
    • /
    • v.26 no.4
    • /
    • pp.298-306
    • /
    • 2023
  • Objectives: Cucumis sativus L. (C. sativus) is vegetable commonly used for managing blood pressure and often consumed in combination with standard antihypertensive therapy, despite lack of scientific evidence supporting their use. Combination of herbs and standard medication could have positive or negative effects. Therefore, this study aimed to evaluate the antihypertensive activity of C. sativus and the combined effect with losartan in the hypertensive rat model induced by angiotensin II. Angiotensin II is a component of the renin-angiotensin-aldosterone system that, upon binding to its receptor, constricts blood vessels leading to elevation of blood pressure. Methods: In an antihypertensive study, rats received C. sativus orally at doses of 9, 18, 27, and 36 mg/kg (full dose); while in a combination study, animals received losartan 2.25 mg/kg combined by either with C. sativus 9 or 18 mg/kg. The standards group received losartan 2.25 mg/kg or 4.5 mg/kg (full dose). Results: Blood pressure was measured using the tail-cuff method. C. sativus significantly attenuated angiotensin II-induced hypertension as observed in groups receiving C. sativus at 9, 18, 27, and 36 mg/kg at 30 minutes after induction showed the average change (Δ) of systolic blood pressure (SBP) and diastolic blood pressure (DBP) with respect to time zero were 28.8/18.3, 24.8/15.8, 22.8/15.5, and 11.5/9.0 mmHg, respectively. Whereas the average change (Δ) of SBP and DBP in the rats receiving the combination of half doses of C. sativus and losartan were 8.8/9.0 mmHg, respectively. These diminished effects were better than a full dose of C. sativus and comparable with a full dose of losartan (6.5/7.8 mmHg). Conclusion: The present findings indicate that C. sativus dose-dependently blocks blood pressure elevation induced by angiotensin II. The combination of half dose of C. sativus and losartan has an additive effect in lowering blood pressure.

Application of Antimicrobial Peptide LL-37 as an Adjuvant for Middle East Respiratory Syndrome-Coronavirus Antigen Induces an Efficient Protective Immune Response Against Viral Infection After Intranasal Immunization

  • Ju Kim;Ye Lin Yang;Yongsu Jeong;Yong-Suk Jang
    • IMMUNE NETWORK
    • /
    • v.22 no.5
    • /
    • pp.41.1-41.16
    • /
    • 2022
  • The human antimicrobial peptide LL-37 has chemotactic and modulatory activities in various immune cells, including dendritic cells. Because of its characteristics, LL-37 can be considered an adjuvant for vaccine development. In this study, we confirmed the possible adjuvant activity of LL-37 in mucosal vaccine development against Middle East respiratory syndrome-coronavirus (MERS-CoV) by means of intranasal immunization in C57BL/6 and human dipeptidyl peptidase 4 (hDPP4)-transgenic (hDPP4-Tg) mice. Intranasal immunization using the receptor-binding domain (RBD) of MERS-CoV spike protein (S-RBD) recombined with LL-37 (S-RBD-LL-37) induced an efficient mucosal IgA and systemic IgG response with virus-neutralizing activity, compared with S-RBD. Ag-specific CTL stimulation was also efficiently induced in the lungs of mice that had been intranasally immunized with S-RBD-LL-37, compared with S-RBD. Importantly, intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 led to reduced immune cell infiltration into the lungs after infection with MERS-CoV. Finally, intranasal immunization of hDPP4-Tg mice with S-RBD-LL-37 led to enhanced protective efficacy, with increased survival and reduced body weight loss after challenge infection with MERS-CoV. Collectively, these results suggest that S-RBD-LL-37 is an effective intranasal vaccine candidate molecule against MERS-CoV infection.

Historical Review and Future of Cardiac Xenotransplantation

  • Jiwon Koh;Hyun Keun Chee;Kyung-Hee Kim;In-Seok Jeong;Jung-Sun Kim;Chang-Ha Lee;Jeong-Wook Seo
    • Korean Circulation Journal
    • /
    • v.53 no.6
    • /
    • pp.351-366
    • /
    • 2023
  • Along with the development of immunosuppressive drugs, major advances on xenotransplantation were achieved by understanding the immunobiology of xenograft rejection. Most importantly, three predominant carbohydrate antigens on porcine endothelial cells were key elements provoking hyperacute rejection: α1,3-galactose, SDa blood group antigen, and N-glycolylneuraminic acid. Preformed antibodies binding to the porcine major xenoantigen causes complement activation and endothelial cell activation, leading to xenograft injury and intravascular thrombosis. Recent advances in genetic engineering enabled knock-outs of these major xenoantigens, thus producing xenografts with less hyperacute rejection rates. Another milestone in the history of xenotransplantation was the development of co-stimulation blockaded strategy. Unlike allotransplantation, xenotransplantation requires blockade of CD40-CD40L pathway to prevent T-cell dependent B-cell activation and antibody production. In 2010s, advanced genetic engineering of xenograft by inducing the expression of multiple human transgenes became available. So-called 'multi-gene' xenografts expressing human transgenes such as thrombomodulin and endothelial protein C receptor were introduced, which resulted in the reduction of thrombotic events and improvement of xenograft survival. Still, there are many limitations to clinical translation of cardiac xenotransplantation. Along with technical challenges, zoonotic infection and physiological discordances are major obstacles. Social barriers including healthcare costs also need to be addressed. Although there are several remaining obstacles to overcome, xenotransplantation would surely become the novel option for millions of patients with end-stage heart failure who have limited options to traditional therapeutics.

LOXL1-AS1 Aggravates Myocardial Ischemia/Reperfusion Injury Through the miR-761/PTEN Axis

  • Wenhua He;Lili Duan;Li Zhang
    • Korean Circulation Journal
    • /
    • v.53 no.6
    • /
    • pp.387-403
    • /
    • 2023
  • Background and Objectives: Myocardial ischemia and reperfusion injury (MIRI) has high morbidity and mortality worldwide. We aimed to explore the role of long noncoding RNA lysyl oxidase like 1 antisense RNA 1 (LOXL1-AS1) in cardiomyocyte pyroptosis. Methods: Hypoxia/reoxygenation (H/R) injury was constructed in human cardiomyocyte (HCM). The level of LOXL1-AS1, miR-761, phosphatase and tensin homolog (PTEN) and pyroptosis-related proteins was monitored by quantitative real-time polymerase chain reaction or western blot. Flow cytometry examined the pyroptosis level. Lactate dehydrogenase (LDH), creatine kinase-MB and cardiac troponin I levels were detected by test kits. Enzyme-linked immunosorbent assay measured the release of inflammatory cytokines. Dual-luciferase assay validated the binding relationship among LOXL1-AS1, miR-761, and PTEN. Finally, ischemia/reperfusion (I/R) animal model was constructed. Hematoxylin and eosin staining assessed morphological changes of myocardial tissue. NOD-like receptor pyrin domain-containing protein 3 (NLRP3) and casepase-1 expression was determined by immunohistochemistry. Results: After H/R treatment, LOXL1-AS1 and PTEN were highly expressed but miR-761 level was suppressed. LOXL1-AS1 inhibition or miR-761 overexpression increased cell viability, blocked the release of LDH and inflammatory cytokines (interleukin [IL]-1β, IL-18), inhibited pyroptosis level, and downregulated pyroptosis-related proteins (ASC, cleaved caspase-1, gasdermin D-N, NLRP3, IL-1β, and IL-18) levels in HCMs. LOXL1-AS1 sponged miR-761 to up-regulate PTEN. Knockdown of miR-761 reversed the effect of LOXL1-AS1 down regulation on H/R induced HCM pyroptosis. LOXL1-AS1 aggravated the MIRI by regulating miR-761/PTEN axis in vivo. Conclusions: LOXL1-AS1 targeted miR-761 to regulate PTEN expression, then enhance cardiomyocyte pyroptosis, providing a new alternative target for the treatment of MIRI.

Anti-Obesity Effect of Lactobacillus acidophilus DS0079 (YBS1) by Inhibition of Adipocyte Differentiation through Regulation of p38 MAPK/PPARγ Signaling

  • Youri Lee;Navid Iqbal;Mi-Hwa Lee;Doo-Sang Park;Yong-Sik Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.34 no.5
    • /
    • pp.1073-1081
    • /
    • 2024
  • Obesity is spawned by an inequality between the portion of energy consumed and the quantity of energy expended. Disease entities such as cardiovascular disease, arteriosclerosis, hypertension, and cancer, which are correlated with obesity, influence society and the economy. Suppression of adipogenesis, the process of white adipocyte generation, remains a promising approach for treating obesity. Oil Red O staining was used to differentiate 3T3-L1 cells for screening 20 distinct Lactobacillus species. Among these, Lactobacillus acidophilus DS0079, referred to as YBS1, was selected for further study. YBS1 therapy decreased 3T3-L1 cell development. Triglyceride accumulation and mRNA expression of the primary adipogenic marker, peroxisome proliferator-activated receptor gamma (PPARγ), including its downstream target genes, adipocyte fatty acid binding protein 4 and adiponectin, were almost eliminated. YBS1 inhibited adipocyte differentiation at the early stage (days 0-2), but no significant difference was noted between the mid-stage (days 2-4) and late-stage (days 4-6) development. YBS1 stimulated the activation of p38 mitogen-activated protein kinase (p38 MAPK) during the early stages of adipogenesis; however, this effect was eliminated by the SB203580 inhibitor. The data showed that YBS1 administration inhibited the initial development of adipocytes via stimulation of the p38 MAPK signaling pathway, which in turn controlled PPARγ expression. In summary, YBS1 has potential efficacy as an anti-obesity supplement and requires further exploration.