DOI QR코드

DOI QR Code

Licochalcone H Targets EGFR and AKT to Suppress the Growth of Oxaliplatin -Sensitive and -Resistant Colorectal Cancer Cells

  • Seung-On Lee (Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University) ;
  • Mee-Hyun Lee (College of Korean Medicine, Dongshin University) ;
  • Ah-Won Kwak (Biosystem Research Group, Department of Predictive Toxicology, Korea Institute of Toxicology) ;
  • Jin-Young Lee (Department of Biological Sciences, Keimyung University) ;
  • Goo Yoon (Department of Pharmacy, College of Pharmacy, Mokpo National University) ;
  • Sang Hoon Joo (College of Pharmacy, Daegu Catholic University) ;
  • Yung Hyun Choi (Department of Biochemistry, College of Korean Medicine, Dong-Eui University) ;
  • Jin Woo Park (Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University) ;
  • Jung-Hyun Shim (Department of Biomedicine, Health & Life Convergence Sciences, BK21 Four, College of Pharmacy, Mokpo National University)
  • Received : 2023.09.05
  • Accepted : 2023.09.21
  • Published : 2023.11.01

Abstract

Treatment of colorectal cancer (CRC) has always been challenged by the development of resistance. We investigated the antiproliferative activity of licochalcone H (LCH), a regioisomer of licochalcone C derived from the root of Glycyrrhiza inflata, in oxaliplatin (Ox)-sensitive and -resistant CRC cells. LCH significantly inhibited cell viability and colony growth in both Ox-sensitive and Ox-resistant CRC cells. We found that LCH decreased epidermal growth factor receptor (EGFR) and AKT kinase activities and related activating signaling proteins including pEGFR and pAKT. A computational docking model indicated that LCH may interact with EGFR, AKT1, and AKT2 at the ATP-binding sites. LCH induced ROS generation and increased the expression of the ER stress markers. LCH treatment of CRC cells induced depolarization of MMP. Multi-caspase activity was induced by LCH treatment and confirmed by Z-VAD-FMK treatment. LCH increased the number of sub-G1 cells and arrested the cell cycle at the G1 phase. Taken together LCH inhibits the growth of Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, and inducing ROS generation and ER stress-mediated apoptosis. Therefore, LCH could be a potential therapeutic agent for improving not only Ox-sensitive but also Ox-resistant CRC treatment.

Keywords

Acknowledgement

This study was funded by the Basic Science Research Program of the National Research Foundation of Korea (NRF) (No. 2019R1A2C1005899) and an NRF grant from the Korean Government (MSIT) (No. 2022R1A5A8033794).

References

  1. Bose, D., Zimmerman, L. J., Pierobon, M., Petricoin, E., Tozzi, F., Parikh, A., Fan, F., Dallas, N., Xia, L., Gaur, P., Samuel, S., Liebler, D. C. and Ellis, L. M. (2011) Chemoresistant colorectal cancer cells and cancer stem cells mediate growth and survival of bystander cells. Br. J. Cancer 105, 1759-1767. https://doi.org/10.1038/bjc.2011.449
  2. Brinzan, C. S., Aschie, M., Cozaru, G. C., Deacu, M., Dumitru, E., Burlacu, I. and Mitroi, A. (2022) KRAS, NRAS, BRAF, PIK3CA, and AKT1 signatures in colorectal cancer patients in south-eastern Romania. Medicine (Baltimore) 101, e30979.
  3. Chiu, Y. J., Lee, C. M., Lin, T. H., Lin, H. Y., Lee, S. Y., Mesri, M., Chang, K. H., Lin, J. Y., Lee-Chen, G. J. and Chen, C. M. (2018) Chinese herbal medicine glycyrrhiza inflatareduces abeta aggregation and exerts neuroprotection through anti-oxidation and anti-inflammation. Am. J. Chin. Med. 46, 1535-1559. https://doi.org/10.1142/S0192415X18500799
  4. Comella, P., Casaretti, R., Sandomenico, C., Avallone, A. and Franco, L. (2009) Role of oxaliplatin in the treatment of colorectal cancer. Ther. Clin. Risk Manag. 5, 229-238.
  5. Ekblad, L. and Johnsson, A. (2012) Cetuximab sensitivity associated with oxaliplatin resistance in colorectal cancer. Anticancer Res. 32, 783-786.
  6. Fernandez-Rozadilla, C., Timofeeva, M., Chen, Z., Law, P., Thomas, M., Schmit, S., Diez-Obrero, V., Hsu, L., Fernandez-Tajes, J., Palles, C., Sherwood, K., Briggs, S., Svinti, V., Donnelly, K., Farrington, S., Blackmur, J., Vaughan-Shaw, P., Shu, X. O., Long, J., Cai, Q., Guo, X., Lu, Y., Broderick, P., Studd, J., Huyghe, J., Harrison, T., Conti, D., Dampier, C., Devall, M., Schumacher, F., Melas, M., Rennert, G., Obon-Santacana, M., Martin-Sanchez, V., Moratalla-Navarro, F., Oh, J. H., Kim, J., Jee, S. H., Jung, K. J., Kweon, S. S., Shin, M. H., Shin, A., Ahn, Y. O., Kim, D. H., Oze, I., Wen, W., Matsuo, K., Matsuda, K., Tanikawa, C., Ren, Z., Gao, Y. T., Jia, W. H., Hopper, J., Jenkins, M., Win, A. K., Pai, R., Figueiredo, J., Haile, R., Gallinger, S., Woods, M., Newcomb, P., Duggan, D., Cheadle, J., Kaplan, R., Maughan, T., Kerr, R., Kerr, D., Kirac, I., Bohm, J., Mecklin, L. P., Jousilahti, P., Knekt, P., Aaltonen, L., Rissanen, H., Pukkala, E., Eriksson, J., Cajuso, T., Hanninen, U., Kondelin, J., Palin, K., Tanskanen, T., Renkonen-Sinisalo, L., Zanke, B., Mannisto, S., Albanes, D., Weinstein, S., Ruiz-Narvaez, E., Palmer, J., Buchanan, D., Platz, E., Visvanathan, K., Ulrich, C., Siegel, E., Brezina, S., Gsur, A., Campbell, P., Chang-Claude, J., Hoffmeister, M., Brenner, H., Slattery, M., Potter, J., Tsilidis, K., Schulze, M., Gunter, M., Murphy, N., Castells, A., Castellvi-Bel, S., Moreira, L., Arndt, V., Shcherbina, A., Stern, M., Pardamean, B., Bishop, T., Giles, G., Southey, M., Idos, G., McDonnell, K., Abu-Ful, Z., Greenson, J., Shulman, K., Lejbkowicz, F., Offit, K., Su, Y. R., Steinfelder, R., Keku, T., van Guelpen, B., Hudson, T., Hampel, H., Pearlman, R., Berndt, S., Hayes, R., Martinez, M. E., Thomas, S., Corley, D., Pharoah, P., Larsson, S., Yen, Y., Lenz, H. J., White, E., Li, L., Doheny, K., Pugh, E., Shelford, T., Chan, A., Cruz-Correa, M., Lindblom, A., Hunter, D., Joshi, A., Schafmayer, C., Scacheri, P., Kundaje, A., Nickerson, D., Schoen, R., Hampe, J., Stadler, Z., Vodicka, P., Vodickova, L., Vymetalkova, V., Papadopoulos, N., Edlund, C., Gauderman, W., Thomas, D., Shibata, D., Toland, A., Markowitz, S., Kim, A., Chanock, S., van Duijnhoven, F., Feskens, E., Sakoda, L., Gago-Dominguez, M., Wolk, A., Naccarati, A., Pardini, B., FitzGerald, L., Lee, S. C., Ogino, S., Bien, S., Kooperberg, C., Li, C., Lin, Y., Prentice, R., Qu, C., Bezieau, S., Tangen, C., Mardis, E., Yamaji, T., Sawada, N., Iwasaki, M., Haiman, C., Le Marchand, L., Wu, A., Qu, C., McNeil, C., Coetzee, G., Hayward, C., Deary, I., Harris, S., Theodoratou, E., Reid, S., Walker, M., Ooi, L. Y., Moreno, V., Casey, G., Gruber, S., Tomlinson, I., Zheng, W., Dunlop, M., Houlston, R. and Peters, U. (2023) Deciphering colorectal cancer genetics through multi-omic analysis of 100,204 cases and 154,587 controls of European and east Asian ancestries. Nat. Genet. 55, 89-99. https://doi.org/10.1038/s41588-022-01222-9
  7. Gausman, V., Dornblaser, D., Anand, S., Hayes, R. B., O'Connell, K., Du, M. and Liang, P. S. (2020) Risk factors associated with early-onset colorectal cancer. Clin. Gastroenterol. Hepatol. 18, 2752-2759.e2. https://doi.org/10.1016/j.cgh.2019.10.009
  8. Goldkorn, T., Balaban, N., Matsukuma, K., Chea, V., Gould, R., Last, J., Chan, C. and Chavez, C. (1998) EGF-receptor phosphorylation and signaling are targeted by H2O2 redox stress. Am. J. Respir. Cell Mol. Biol. 19, 786-798. https://doi.org/10.1165/ajrcmb.19.5.3249
  9. Graham, J., Mushin, M. and Kirkpatrick, P. (2004) Oxaliplatin. Nat. Rev. Drug Discov. 3, 11-12. https://doi.org/10.1038/nrd1287
  10. Hsu, C. P., Kao, T. Y., Chang, W. L., Nieh, S., Wang, H. L. and Chung, Y. C. (2011) Clinical significance of tumor suppressor PTEN in colorectal carcinoma. Eur. J. Surg. Oncol. 37, 140-147. https://doi.org/10.1016/j.ejso.2010.12.003
  11. Kang, T. H., Seo, J. H., Oh, H., Yoon, G., Chae, J. I. and Shim, J. H. (2017) Licochalcone A suppresses specificity protein 1 as a novel target in human breast cancer cells. J. Cell. Biochem. 118, 4652-4663. https://doi.org/10.1002/jcb.26131
  12. Kim, H. S., Oh, H. N., Kwak, A. W., Kim, E., Lee, M. H., Seo, J. H., Cho, S. S., Yoon, G., Chae, J. I. and Shim, J. H. (2021) Deoxypodophyllotoxin inhibits cell growth and induces apoptosis by blocking EGFR and MET in gefitinib-resistant non-small cell lung cancer. J. Microbiol. Biotechnol. 31, 559-569. https://doi.org/10.4014/jmb.2101.01029
  13. Kwak, A. W., Choi, J. S., Liu, K., Lee, M. H., Jeon, Y. J., Cho, S. S., Yoon, G., Oh, H. N., Chae, J. I. and Shim, J. H. (2020) Licochalcone C induces cell cycle G1 arrest and apoptosis in human esophageal squamous carcinoma cells by activation of the ROS/MAPK signaling pathway. J. Chemother. 32, 132-143. https://doi.org/10.1080/1120009X.2020.1721175
  14. Kwak, A. W., Lee, J. Y., Lee, S. O., Seo, J. H., Park, J. W., Choi, Y. H., Cho, S. S., Yoon, G., Lee, M. H. and Shim, J. H. (2023) Echinatin induces reactive oxygen species-mediated apoptosis via JNK/p38 MAPK signaling pathway in colorectal cancer cells. Phytother. Res. 37, 563-577. https://doi.org/10.1002/ptr.7634
  15. Kwak, A. W., Lee, M. J., Lee, M. H., Yoon, G., Cho, S. S., Chae, J. I. and Shim, J. H. (2021) The 3-deoxysappanchalcone induces ROSmediated apoptosis and cell cycle arrest via JNK/p38 MAPKs signaling pathway in human esophageal cancer cells. Phytomedicine 86, 153564.
  16. Lin, L., Li, X., Pan, C., Lin, W., Shao, R., Liu, Y., Zhang, J., Luo, Y., Qian, K., Shi, M., Bin, J., Liao, Y. and Liao, W. (2019) ATXN2L upregulated by epidermal growth factor promotes gastric cancer cell invasiveness and oxaliplatin resistance. Cell Death Dis. 10, 173.
  17. Liu, X., Xing, Y., Li, M., Zhang, Z., Wang, J., Ri, M., Jin, C., Xu, G., Piao, L., Jin, H., Zuo, H., Ma, J. and Jin, X. (2021) Licochalcone A inhibits proliferation and promotes apoptosis of colon cancer cell by targeting programmed cell death-ligand 1 via the NF-kappaB and Ras/Raf/MEK pathways. J. Ethnopharmacol. 273, 113989.
  18. Malumbres, M. and Barbacid, M. (2009) Cell cycle, CDKs and cancer: a changing paradigm. Nat. Rev. Cancer 9, 153-166. https://doi.org/10.1038/nrc2602
  19. Meyerhardt, J. A. and Mayer, R. J. (2005) Systemic therapy for colorectal cancer. N. Engl. J. Med. 352, 476-487. https://doi.org/10.1056/NEJMra040958
  20. Moloney, J. N. and Cotter, T. G. (2018) ROS signalling in the biology of cancer. Semin. Cell Dev. Biol. 80, 50-64. https://doi.org/10.1016/j.semcdb.2017.05.023
  21. Morgan, E., Arnold, M., Gini, A., Lorenzoni, V., Cabasag, C. J., Laversanne, M., Vignat, J., Ferlay, J., Murphy, N. and Bray, F. (2023) Global burden of colorectal cancer in 2020 and 2040: incidence and mortality estimates from GLOBOCAN. Gut 72, 338-344. https://doi.org/10.1136/gutjnl-2022-327736
  22. Nho, S. H., Yoon, G., Seo, J. H., Oh, H. N., Cho, S. S., Kim, H., Choi, H. W., Shim, J. H. and Chae, J. I. (2019) Licochalcone H induces the apoptosis of human oral squamous cell carcinoma cells via regulation of matrin 3. Oncol. Rep. 41, 333-340.
  23. Oh, H. N., Lee, M. H., Kim, E., Kwak, A. W., Yoon, G., Cho, S. S., Liu, K., Chae, J. I. and Shim, J. H. (2020) Licochalcone D induces ROS-dependent apoptosis in gefitinib-sensitive or resistant lung cancer cells by targeting EGFR and MET. Biomolecules 10, 297.
  24. Oh, H. N., Lee, M. H., Kim, E., Yoon, G., Chae, J. I. and Shim, J. H. (2019a) Licochalcone B inhibits growth and induces apoptosis of human non-small-cell lung cancer cells by dual targeting of EGFR and MET. Phytomedicine 63, 153014.
  25. Oh, H. N., Oh, K. B., Lee, M. H., Seo, J. H., Kim, E., Yoon, G., Cho, S. S., Cho, Y. S., Choi, H. W., Chae, J. I. and Shim, J. H. (2019b) JAK2 regulation by licochalcone H inhibits the cell growth and induces apoptosis in oral squamous cell carcinoma. Phytomedicine 52, 60-69. https://doi.org/10.1016/j.phymed.2018.09.180
  26. Park, K. H., Joo, S. H., Seo, J. H., Kim, J., Yoon, G., Jeon, Y. J., Lee, M. H., Chae, J. I., Kim, W. K. and Shim, J. H. (2022) Licochalcone H induces cell cycle arrest and apoptosis in human skin cancer cells by modulating JAK2/STAT3 signaling. Biomol. Ther. (Seoul) 30, 72-79. https://doi.org/10.4062/biomolther.2021.149
  27. Prasad, S., Gupta, S. C. and Tyagi, A. K. (2017) Reactive oxygen species (ROS) and cancer: role of antioxidative nutraceuticals. Cancer Lett. 387, 95-105. https://doi.org/10.1016/j.canlet.2016.03.042
  28. Purba, E. R., Saita, E. I. and Maruyama, I. N. (2017) Activation of the EGF Receptor by ligand binding and oncogenic mutations: the "Rotation Model". Cells 6, 13.
  29. Siegel, R. L., Miller, K. D., Wagle, N. S. and Jemal, A. (2023a) Cancer statistics, 2023. CA Cancer J. Clin. 73, 17-48.
  30. Siegel, R. L., Wagle, N. S., Cercek, A., Smith, R. A. and Jemal, A. (2023b) Colorectal cancer statistics, 2023. CA Cancer J. Clin. 73, 233-254.
  31. Sreevalsan, S. and Safe, S. (2013) Reactive oxygen species and colorectal cancer. Curr. Colorectal Cancer Rep. 9, 350-357. https://doi.org/10.1007/s11888-013-0190-5
  32. Temraz, S., Mukherji, D., Alameddine, R. and Shamseddine, A. (2014) Methods of overcoming treatment resistance in colorectal cancer. Crit. Rev. Oncol. Hematol. 89, 217-230. https://doi.org/10.1016/j.critrevonc.2013.08.015
  33. Tian, X., Gu, T., Lee, M. H. and Dong, Z. (2022) Challenge and countermeasures for EGFR targeted therapy in non-small cell lung cancer. Biochim. Biophys. Acta Rev. Cancer 1877, 188645.
  34. Trott, O. and Olson, A. J. (2010) AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 31, 455-461. https://doi.org/10.1002/jcc.21334
  35. Truong, T. H. and Carroll, K. S. (2012) Redox regulation of epidermal growth factor receptor signaling through cysteine oxidation. Biochemistry 51, 9954-9965. https://doi.org/10.1021/bi301441e
  36. Tsubaki, M., Takeda, T., Matsuda, T., Kishimoto, K., Takefuji, H., Taniwaki, Y., Ueda, M., Hoshida, T., Tanabe, K. and Nishida, S. (2023) Statins enhances antitumor effect of oxaliplatin in KRAS-mutated colorectal cancer cells and inhibits oxaliplatin-induced neuropathy. Cancer Cell Int. 23, 73.
  37. van Dinteren, S., Meijerink, J., Witkamp, R., van Ieperen, B., Vincken, J. P. and Araya-Cloutier, C. (2022) Valorisation of liquorice (Glycyrrhiza) roots: antimicrobial activity and cytotoxicity of prenylated (iso)flavonoids and chalcones from liquorice spent (G. glabra, G. inflata, and G. uralensis). Food Funct. 13, 12105-12120. https://doi.org/10.1039/D2FO02197H
  38. Wang, Z., Cao, Y., Paudel, S., Yoon, G. and Cheon, S. H. (2013) Concise synthesis of licochalcone C and its regioisomer, licochalcone H. Arch. Pharm. Res. 36, 1432-1436. https://doi.org/10.1007/s12272-013-0222-3
  39. Wang, Z., Xu, G., Li, Z., Xiao, X., Tang, J. and Bai, Z. (2022) NLRP3 inflammasome pharmacological inhibitors in glycyrrhiza for NLRP3-driven diseases treatment: extinguishing the fire of inflammation. J. Inflamm. Res. 15, 409-422. https://doi.org/10.2147/JIR.S344071
  40. Weng, M. S., Chang, J. H., Hung, W. Y., Yang, Y. C. and Chien, M. H. (2018) The interplay of reactive oxygen species and the epidermal growth factor receptor in tumor progression and drug resistance. J. Exp. Clin. Cancer Res. 37, 61.
  41. Zhang, Y. J., Li, A. J., Han, Y., Yin, L. and Lin, M. B. (2014) Inhibition of Girdin enhances chemosensitivity of colorectal cancer cells to oxaliplatin. World J. Gastroenterol. 20, 8229-8236. https://doi.org/10.3748/wjg.v20.i25.8229
  42. Zhang, Y. Y., Feng, P. P., Wang, H. F., Zhang, H., Liang, T., Hao, X. S., Wang, F. Z. and Fei, H. R. (2022) Licochalcone B induces DNA damage, cell cycle arrest, apoptosis, and enhances TRAIL sensitivity in hepatocellular carcinoma cells. Chem. Biol. Interact. 365, 110076.