• Title/Summary/Keyword: Receptor autoradiography

Search Result 17, Processing Time 0.028 seconds

Neural Adaptation of Beta Adrenergic Receptor Subtypes after Chronic Imipramine Treatment: A Quantitative Autoradiographic Study

  • Park, Hae-Young;Hong, Young-Sook;Park, Chan-Woong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.161-167
    • /
    • 1997
  • This study compares the subtypes of central beta adrenergic receptors (ARs) of brains of untreated rats with those of imipramine-treated rats. Beta adrenergic receptors were measured by quantitative autoradiography of the binding of $^3H$-dihydroalprenolol ($^3H$-DHA) in coronal sections of rat brain. Repeated treatment of rats with imipramine significantly reduced the binding of $^3H$-DHA to beta-1 AR in many brain areas, especially throughout the cerebral cortex, hippocampus, thalamus, and amygdala. Significant reductions of the binding of $^3H$-DHA to beta-2 AR were not found in any area of the brain. These data suggests that a selective down-regulation of beta-1 AR may be involved in the adaptive changes occurring after prolonged imipramine treatment.

  • PDF

Distribution of the Muscarinic Cholinergic Receptors and Characterization in the Brain of Wistar Rats and Spontaneously Hypertensive Rats (SHR Strain) by Digital Autoradiography (Digital Autoradiographic System을 이용한 선천성고혈압에서의 Muscarinic Cholinergic Receptor 분포 및 특성)

  • Sohn, In;Lee, Myung-Chul;Koh, Chang-Soon
    • The Korean Journal of Nuclear Medicine
    • /
    • v.27 no.1
    • /
    • pp.28-34
    • /
    • 1993
  • Using in vitro autoradiography with a digital autoradiography system and radioreceptor assay, the distribution and the binding characteristics of the muscarinic cholinergic receptors (mAChR) were studied in regions of rat brain. Radioreceptor assay revealed that mAChR could be measured with saturation binding assay in the brain and heart homogenates: No difference in Kd or Bmax of the brain or heart was found between the normal Wistar rats and SHR rats. Specific binding of $^3H$ quinuclidinyl benzilate (QNB) increased and saturation was reached by 2 hours after incubation with slide-mounted brain tissue. The distribution of mAChR was heterogeneous along the fields of brain. Affinity (Kd) of mAChR was not different significantly among cortex, hippocampus and caudate-putamen. No difference was found between normal rats and SHR strain. More receptors (Bmax) were found in the cortex and hippocampus than in the caudate-putamen in normal rats. More receptors were found in the cortex and caudate-putamen in SHR rats than in normal rats. Radioreceptor assay and digital autoradiographic analysis of affinity and number of mAChR gave the same results. With the above findings, we concluded that we could use digital autoradiographic system with $^3H$-QNB in the characterization of mAChR of rats and that the cortex and caudate-putamen of SHR strain rats have more receptors than those of normal rats.

  • PDF

Receptor Subtypes for Endothelin in the Kidney of the Freshwater Turtle (Amyda japonica)

  • Kim, Sung-Zoo
    • Animal cells and systems
    • /
    • v.4 no.1
    • /
    • pp.63-70
    • /
    • 2000
  • The distribution of receptor subtypes for endothelin (ET) in the kidney of the freshwater turtle, Amyda japonica, was examined by quantitative in vitro receptor autoradiography using iodinatd mammalian type ET-1 ($^125$/I-ET-1)as a radiolabeled ligand. Specific $^125$/I-ET-1 bindings were localized to renal tubules, renal arteries and ureter with binding densities of 111.21 $\pm$ 19.14, 182.13$\pm$10.57 and 219.46$\pm$12.83 amol/$mm^2$. respectively. Binding dissociation constants in renal tubules, renal arteries and ureter were 1.05 $\pm$ 0.63, 2.03 $\pm$0.56 and 1.70$\pm$0.47nM, respectively. Receptor subtypes for ET in the kidney were characterized by competition with BQ 123 and BQ 788 as specific antagonists for ET receptors, type A (ET$_A$ ), and type B (ET$_B$) subtypes, respectively. Specific $^125$/I-ET-1 bindings in renal arteries and ureter were potently inhibited by BQ 123 in a dose-dependent manner, whereas BQ 788 was not in competing for specific $^125$/I-ET-1 bindings in this structure. However, specific $^125$/I-ET-1 bindings in renal tubules were inhibited more potently by BQ 788. Therefore, these results indicate that specific ET receptors are localized in renal tubules, renal arteries and the ureter of the freshwater turtle. Results also suggest that the predominant ET receptor subtypes are like the ETA receptor in renal arteries and ureter, and like the ET/$_A$ receptor in the renal tubule.

  • PDF

Developmental Modulation of Specific Receptor for Atrial Natriuretic Peptide in the Rat Heart

  • Kim, Yoon-Ah;Kim, Soo-Mi;Kim, Suhn-Hee;Kim, Sung-Zoo
    • Animal cells and systems
    • /
    • v.6 no.3
    • /
    • pp.253-261
    • /
    • 2002
  • Although cardiac distribution of specific receptors for atrial natriuretic peptide (ANP) was mainly observed in the ventricular endocardium, the modulation of ANP receptors in relation to cardiac development is not defined. The present study was undertaken to investigate ANP receptor modulation in rat during development. In the developmental stages examined (fetus, after postnatal 3-days, 1-, 2-, 3-, 4-, and 8-week-old Sprague Dawley rats) specific ANP binding sites were localized in the right and left ventricular endo-cardia by quantitative in vitro receptor autoradiography using (equation omitted)-rat ANP as labeled ligand. The specific bindings to endocardium were much higher in the right than the left ventricle. The binding affinities of ANP were much higher in the right than the left ventricular endocardium. The difference of these binding affinities among various developmental stages was not observed in the right ventricle, whereas the binding affinity in left ventricle was gradually increased with aging and reached the peak value at 8 weeks. No significant difference in maximal binding capacities of endocardial bindings was observed in the right and left ventricular endocardia during developmental stages. Also, cGMP production via activation of particulate guanylyl cyclase-coupled receptor subtypes in the ventricular membranes was gradually decreased with close relationship to aging. Therefore, the present study show that the endocardial ANP receptor is modulated with close relationship to cardiac development in the left ventricle rather than the right ventricle, and may be involved in regulating myocardial contractility in left heart.

Changes of the Level of G Protein ${\alpha}-subunit$ mRNA by Withdrawal from Morphine and Butorphanol

  • Oh, Sei-Kwan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.4
    • /
    • pp.291-299
    • /
    • 2000
  • Morphine or butorphanol was continuously infused into cerebroventricle (i.c.v.) with the rate of $26\;nmol/{\mu}l/h$ for 3 days, and the withdrawal from opioid was rendered 7 hrs after the stopping of infusion. The expression of physical dependence produced by these opioids was evaluated by measuring the naloxone-precipitated withdrawal signs. The withdrawal signs produced in animals dependent on butorphanol (kappa opioid receptor agonist) were similar to those of morphine (mu opioid receptor agonist). Besides the behavioral modifications, opioid withdrawal affected G protein expression in the central nervous system. The G-protein ${\alpha}-subunit$ has been implicated in opioid tolerance and withdrawal. The effects of continuous infusion of morphine or butorphanol on the modulation of G protein ${\alpha}-subunit$ mRNA were investigated by using in situ hybridization study. In situ hybridization showed that the levels of $G\;{\alpha}s$ and $G\;{\alpha}i$ were changed during opioid withdrawal. Specifically, the level of $G\;{\alpha}s$ mRNA was decreased in the cortex and cerebellar granule layer during the morphine and butorphanol withdrawal. The level of $G\;{\alpha}i$ mRNA was decreased in the dentate gyrus and cerebellar granule layer during the morphine withdrawal. However, the level of $G\;{\alpha}i$ mRNA was significantly elevated during the butorphanol withdrawal. These results suggest that region-specific changes of G protein ${\alpha}-subunit$ mRNA were involved in the withdrawal from morphine and butorphanol.

  • PDF

Repeated Morphine Administration Increases TRPV1 mRNA Expression and Autoradiographic Binding at Supraspinal Sites in the Pain Pathway

  • Nguyen, Thi-Lien;Nam, Yun-Son;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.30 no.4
    • /
    • pp.328-333
    • /
    • 2022
  • Repeated morphine administration induces tolerance to its analgesic effects. A previous study reported that repeated morphine treatment activates transient receptor potential vanilloid type 1 (TRPV1) expression in the sciatic nerve, dorsal root ganglion, and spinal cord, contributing to morphine tolerance. In the present study, we analyzed TRPV1 expression and binding sites in supraspinal pain pathways in morphine-tolerant mice. The TRPV1 mRNA levels and binding sites were remarkably increased in the cortex and thalamus of these animals. Our data provide additional insights into the effects of morphine on TRPV1 in the brain and suggest that changes in the expression of, and binding to TRPV1 in the brain are involved in morphine tolerance.

The Role of Adenosine Receptors on Acetylcholine Release in the Rat Striatum

  • Kim, Do-Kyung;Kim, Hyeon-A;Choi, Bong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.1
    • /
    • pp.1-12
    • /
    • 1997
  • As it has been reported that the depolarization induced acetylcholine (ACh) release is modulated by activation of presynaptic $A_1$ adenosine heteroreceptor and various evidence suggest that indicate the $A_2$ adenosine receptor is present in the striatum, this study was undertaken to delineate the role of adenosine receptors on the striatal ACh release. Slices from the rat striatum were equilibrated with $[^3H]$choline and then the release amount of the labelled product, $[^3H]$ACh, which was evoked by electrical stimulation (rectangular pulses, 3 Hz, 2 ms, 24 mA, $5\;Vcm^{-1}$, 2 min), was measured, and the influence of various agents on the evoked tritium outflow was investigated. And also, quantitative receptor autoradiography and drug-receptor binding assay were performed in order to confirm the presence and characteristics of $A_1$ and $A_2$ adenosine receptors in the rat striatum. Adenosine $(10{sim}100\;{mu}M)$ and $N^6$-cyclopentyladenosine (CPA, $1{sim}100\;{mu}M)$ decreased the $[^3H]$ACh release in a dose-dependent manner without changing the basal rate of release in the rat striatum. The reducing effects of ACh release by adenosine and CPA were abolished by 8-cyclopentyl-1,3-dipropy-Ixanthine (DPCPX, 2 ${mu}M$), a selective $A_1$, adenosine receptor antagonist, treatment. The effect of adenosine was potentiated markedly by 3,7-dimethyl-1-propargylxanthine (DMPX, 10 ${mu}M$), a specific $A_2$ adenosine receptor antagonist. 2-P-(2-carboxyethyl)phenethylamimo-5'-N- ethylcarboxamidoadenosine hydrochloride (CGS-21680C), in concentrations ranging from 0.01 to 10 ${mu}M$, a recently introduced potent $A_2$ adenosine receptor agonist, increased the $[^3H]$ACh release in a dose related fashion without changing the basal rate of release. These effects were completely abolished by DMPX $(10\;{mu}M)$. In autoradiograrhy experiments, $[^3H]$2-chloro-$N^6$-cyclopentyladenosine ($[^3H]$ CCPA) bindings were highly localized in the hippocampus and the cerebral cortex. Additionally, lower levels of binding were found in the striatum. However, $[^3H]$CGS-21680C bindings were highly localized in the striatal region with the greatest density of binding found in the caudate nucleus and putamen. Lower levels of binding were also found in the nucleus accumbens and olfactory tubercle. In drug-receptor binding assay, binding of $[^3H]$ CCPA to $A_1$ adenosine receptors of rat striatal membranes was inhibited by CPA ($K_i$ = 1.6 nM) and N-ethylcarboxamidoadenosine (NECA, $K_i$ = 12.9 nM), but not by CGS-21680C ($K_i$ = 2609.2 nM) and DMPX ($K_i$ = 19,386 nM). In contrast, $[^3H]$CGS-21680C binding to $A_2$ denosine receptors was inhibited by CGS-21680C ($K_i$ = 47.6 nM) and NECA ($K_i$ = 44.9 nM), but not by CPA ($K_i$ = 2099.2 nM) and DPCPX ($K_i$ = 19,207 nM). The results presented here suggest that both types of $A_1$ and $A_2$ adenosine heteroreceptors exist and play an important role in ACh release in the rat striatal cholinergic neurons.

  • PDF

Immunohistochemical study on distribution of progesterone target cells by 17β-Estradiol I. Distribution of progesterone target cells by autoradiography (17β-Estradiol이 progesterone target cell 분포에 미치는 영향에 대한 면역조직화학적 연구 I. 방사선자기법을 이용한 target cell의 분포에 대하여)

  • Kwak, Soo-dong;Goh, Pil-ok;Kim, Chong-sun
    • Korean Journal of Veterinary Research
    • /
    • v.36 no.1
    • /
    • pp.93-99
    • /
    • 1996
  • This study was designed to investigate the effect of estrogen(Est) on the progestcrone(Prog) target cells by autoradiography. The spayed 16 mice(ICR, approximately 18~25g) were randomly alloted into 3 groups. $^3H$-Prog-treated group were injected with $40{\mu}Ci$ of $^3H$-Prog/mouse/day for 1 day, Est + $^3H$-Prog-treated group with $20{\mu}Ci$ of $17{\beta}$-Est/mouse/day for 3 days and then with $40{\mu}Ci$ of $^3H$-Prog/mouse at 4th day, and Est+$^3H$-thymidine(TdR)-treated group with $20{\mu}g$ of $17{\beta}$-Est/mouse/day for 3 days and then $80{\mu}Ci$ of $^3H$-TdR/mouse at 4th days. 1. Mice uteri of both Est+$^3H$-Prog-treated group and Est+$^3H$-TdR-treated group were hypemophied in gross finding and the endometrium and myometrium were thickened in microscopic findings. These findings were confirmed that Est enlarged the uteri of mice. 2. Cryo-preparations of mice organs were processed for autoradiography using Kodak NTB-2 emulsion following Kodak D-19 developer and hematoxylin counterstain. In each group, the number values of silver grain distribution appeared to be higher in the $^3H$-Prog-treated group than in the Est+$^3H$-Prog-treated group. It was considered that Est and Prog inhibit each other in action. 3. In both $^3H$-Prog-treated group and Est+$^3H$-Prog-treated group, the uteri have highest distribution rates of silver grains than in other organs, and the cerebral neurons, hepatocytes, bronchiolar epithelial cells and splenic reticular cells also contained some silver grains. 4. The orders of the cell types with more number of silver grains in the uteri were stromal cells, glandular epithelial cells, luminal surface cells and muscular cells and also were as above orders in distribution of proliferating cell type by $^3H$-TdR.

  • PDF

Characterization of Thyrotrpin Releasing Hormone Receptor in Brain (뇌의 Thyrotropin Releasing Hormone 수용체 분포에 관한 연구)

  • Koong, Sung-Soo;Kim, Seung-Taik;Chung, June-Key;Lee, Myung-Chul;Cho, Bo-Youn;Koh, Chang-Soon;Yoo, Eun-Sook;Park, Eun-Mey;Seo, Il-Tak
    • The Korean Journal of Nuclear Medicine
    • /
    • v.24 no.1
    • /
    • pp.93-100
    • /
    • 1990
  • To evaluate the utility of autoradiographic technique in the detection of TRH receptor changes in brain after the various kinds of stimulation or drug administration, we tried the characterization of TRH receptor in mouse brain and autoradiography in rat brain as a preliminary study. The Kd value of [3-H] MeTRH to TRH receptors of adult male ICR mouse brain (cebellum and spinal cord were excluded) was 3.55+0.6 nM and Bmax was 3.44+0.52 fmol/mg wet tissue by saturation analysis. The Kd value of TRH to TRH receptors was 133.8+28.2 nM by competition analysis. And we could visualize the distribution of TRH receptors in rat brain by autoradiographic technique.

  • PDF

Modulation in NMDA and $GABA_A$ Receptor Expression after Cerebroventricular Infusion of Ginsenosides

  • Oh Seikwan;Kim Hack-Seang
    • Proceedings of the Ginseng society Conference
    • /
    • 2002.10a
    • /
    • pp.96-112
    • /
    • 2002
  • In the present study, we have investigated the effects of centrally administered ginsenoside Rc or Rgl on the modulation of NMDA receptor and $GABA_A$ receptor binding in rat brain. The NMDA receptor binding was analyzed by quantitative autoradiography using $[^3H]MK-801$ binding, and $GABA_A$ receptor bindings were analyzed by using $[^3H]muscimol\;and\;[^3H]flunitrazepam$ in rat brain slices. Rats were infused with ginsenoside Rc or Rg1 ($10\;{\mu}g/10{\mu}l/hr$, i.c.v.) for 7 days, through pre-implanted cannula by osmotic minipumps (Alzet, model 2ML), The levels of $[^3H]MK-801$ binding were highly decreased in part of cortex and cingulated by ginsenoside Rc and Rgl. The levels of $[^3H]muscimol$ binding were strongly elevated in almost all regions of frontal cortex by the treatment of ginseoside Rc but decreased by ginsenoside Rg 1. However, the $[^3H]flunitrazepam$ binding was not modulated by ginsenoside Rc or ginsenoside Rgl infusion. These results suggest that prolonged infusion of ginsenoside could differentially modulate $[^3H]MK-801\;and\;[^3H]muscimol$ binding in a region-specific manner. Also, we investigated the influence of centrally administered ginsenoside on the regulation of mRNA levels of the family of NMDA receptor subtypes (NR1, NR2A, NR2B, NR2C) by in situ hybridization histochemistry in the rat brain. The level of NR1 mRNA is significantly increased in temporal cortex, caudate putamen, hippocampus, and granule layer of cerebellum in Rgl-infused rats as compared to control group. The level of NR2A mRNA is elevated in the frontal cortex. In contrast, it was decreased in CAI area of hippocampus in Rgl-infused rats. However, there was no significant change of NR1 and NR2A mRNA levels in Rc-infused rats. The level of NR2B mRNA is elevated in cortex, caudate putamen, and thalamus in both Rc- and Rg-infused rats. In contrast, NR2B level is decreased in CA3 in Rgl-infused rats. The level of NR2C mRNA is increased in the granule layer of cerebellum in only Rg1 but not Rc infused rats. These results show that structure difference of ginsenoside may diversely affect the modulation of expression of NMDA receptor subunit mRNA after infusion into cerebroventricle in rats.

  • PDF