• Title/Summary/Keyword: Receptor, Epidermal growth factor

Search Result 349, Processing Time 0.032 seconds

Antivascular Therapy via Inhibition of Receptor Tyrosine Kinases in an Orthotopic Murine Model of Salivary Adenoid Cystic Carcinoma

  • Park, Young-Wook;Kang, Hye-Jeong;Park, Jung-Min
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.1
    • /
    • pp.59-70
    • /
    • 2008
  • Purpose: We evaluated the therapeutic effect of AEE788, a dual inhibitor of epidermal growth factor (EGF) and vascular endothelial growth factor (VEGF) receptor tyrosine kinases on human salivary adenoid cystic carcinoma (ACC) cells growing in nude mice. Experimental Design: We examined the effects of AEE788 on salivary ACC cell growth and apoptosis. To determine the in vivo effects of AEE788, nude mice with orthotopic parotid tumors were randomized to receive oral AEE788 (50 mg/kg) three times per week, injected paclitaxel ($200{\mu}g$) once per week, AEE788 plus paclitaxel, or placebo. Mechanisms of in vivo AEE788 activity were determined by immunohistochemical analysis. Results: Treatment of salivary ACC cells with AEE788 led to growth inhibition and induction of apoptosis. AEE788 inhibited tumor growth and prevented lung metastasis in nude mice. Furthermore, AEE788 potentiated growth inhibition and apoptosis of ACC tumor cells mediated by paclitaxel. Tumors of mice treated with AEE788 and AEE788 plus paclitaxel exhibited down-regulation of activated EGFR and its downstream mediators (Akt and MAPK), increased tumor and endothelial cell apoptosis, and decreased microvessel den-sity, which correlated with a decrease in the level of MMP-9, MMP-2 and bFGF expression and a decrease in the incidence of vascular metastasis. Conclusions: These data show that tumor-associated endothelial cells are important in the process of tumor-metastasis. And VEGFR can be a molecular target for therapy of metastatic lung lesion of salivary ACC.

The Role of Neutrophils and Epidermal Growth Factor Receptors in Lipopolysaccharide-Induced Mucus Hypersecretion (리포다당질 (lipopolysaccharide)에 의한 기관지 점액 생성 기전에서 호중구와 상피세포 성장인자 수용체 (epidermal growth factor receptor)의 역할)

  • Bak, Sang Myeon;Park, Soo Yeon;Hur, Gyu Young;Lee, Seung Heon;Kim, Je Hyeong;Lee, Sang Yeub;Shin, Chol;Shim, Jae Jeong;In, Kwang Ho;Kang, Kyung Ho;Yoo, Se Hwa
    • Tuberculosis and Respiratory Diseases
    • /
    • v.54 no.1
    • /
    • pp.80-90
    • /
    • 2003
  • Background : Goblet cell hyperplasia is a critical pathological feature in hypersecretory diseases of the airways. A bacterial infection of the lung is also known to induce inflammatory responses, which can lead to the overproduction of mucus. Recently, mucin synthesis in the airways has been reported to be regulated by neutrophilic inflammation-induced epidermal growth factor receptor (EGFR) expression and activation. In addition, it was reported that migration of the activated neutrophils is dependent on the matrix metalloproteinases (MMPs), especially MMP-9. In this study, bacterial lipopolysaccharide (LPS)-induced goblet cell hyperplasia and mucus hypersecretion by EGFR cascade, resulting from the MMPs-dependent neutrophilic inflammation were investigated in the rat airways. Methods : Pathogen-free Sprague-Dawley rats were studied in vivo. Various concentrations of LPS were instilled into the trachea in $300{\mu}{\ell}$ PBS (LPS group). Sterile PBS ($300{\mu}{\ell}$) was instilled into the trachea of the control animals (control group). The airways were examined on different days after instilling LPS. For an examination of the relationship between the LPS-induced goblet cell hyperplasia and MMPs, the animals were pretreated 3 days prior to the LPS instillation and daily thereafter with the matrix metalloproteinase inhibitor (MMPI; 20 mg/Kg/day of CMT-3; Collagenex Pharmaceuticals, USA). The neutrophilic infiltration was quantified as a number in five high power fields (HPF). The alcian blue/periodic acid-Schiff (AB/PAS) stain were performed for the mucus glycoconjugates and the immunohistochemical stains were performed for MUC5AC, EGFR and MMP-9. Their expressions were quantified by an image analysis program and were expressed by the percentage of the total bronchial epithelial area. Results : The instillation of LPS induced AB/PAS and MUC5AC staining in the airway epithelium in a time- and dose-dependent manner. Treatment with the MMPI prevented the LPS-induced goblet cell hyperplasia significantly. The instillation of LPS into the trachea induced also EGFR expression in the airway epithelium. The control airway epithelium contained few leukocytes, but the intratracheal instillation of LPS resulted in a neutrophilic recruitment. A pretreatment with MMPI prevented neutrophilic recruitment, EGFR expression, and goblet cell hyperplasia in the LPS-instilled airway epithelium. Conclusion : Matrix metalloproteinase is involved in LPS-induced mucus hypersecretion, resulting from a neutrophilic inflammation and EGFR cascade. These results suggest a potential therapeutic role of MMPI in the treatment of mucus hypersecretion that were associated with a bacterial infection of the airways.

Effect of Epidermal Growth Factor(EGF) on Early Embryonic Development in Mouse (Epidermal Growth Factor(EGF)가 생쥐 초기배아의 발생에 미치는 영향)

  • Byun, Hye-Kyung;Lee, Ho-Joon;Kim, Sung-Rye;Kim, Hae-Kwon;Kim, Moon-Kyoo
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.22 no.2
    • /
    • pp.163-170
    • /
    • 1995
  • Growth factors (GFs) produced by the embryo or by the maternal reproductive tract have been reported to regulate the embryonic development and differentiation. Among GFs, EGF as a mitogen plays a role in mitosis and functional differentiation of trophectoderm cells in mouse. The present study was carried out to investigate the effect of EGF on development of mouse embryos and to localize EGF in the mouse oocytes and embryos, which has been reported to be detected in the reproductive tract in mammals. To investigate the effect of EGF on the development of the embryo, mouse 2-cell embryos were cultured to blastocysts stage in Ham's F10 medium, treated with EGF(10-50 ng/ml) for 72 hrs. Immunocytochemistry was performed from oocyte to blastocyst stage with anti-EGF and anti-Mouse IgG, in order to determine the stage which EGF would be expressed in mouse. Exogenous EGF (more than 10 ng/ml) in the culture medium improved the developmental and hatching rates in the mouse embryos. As a result of immunocytochemistry, the embryonic EGF was expressed after the late 4-cell stage. EGF is thought to enhance preimplantation embryonic development and hatching. Exogenous EGF in the culture medium is thought to activate EGF receptor in the late 4-cell embryos and to enhance blastulation and hatching in mouse embryos. It is concluded that EGF enhances the developmental and hatching rates in the mouse embryos.

  • PDF

Tilianin Inhibits MUC5AC Expression Mediated Via Down-Regulation of EGFR-MEK-ERK-Sp1 Signaling Pathway in NCI-H292 Human Airway Cells

  • Song, Won-Yong;Song, Yong-Seok;Ryu, Hyung Won;Oh, Sei-Ryang;Hong, JinTae;Yoon, Do-Young
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.49-56
    • /
    • 2017
  • In the human airway, mucus exists to protect the respiratory system as a primary barrier of the innate immune system. However, hyperexpressed mucus limits airflow, resulting in a decrease of lung function. Among more than 20 mucin family members, MUC5AC and MUC5B are major glycoproteins in human airway mucus. The epidermal growth factor receptor (EGFR) signaling pathway is one of the mechanisms of these mucins expression and specificity protein-1 (Sp1) transcription factor is the downstream signal of this pathway, playing pivotal roles in mucin expression. Even though there are some drugs for treating mucus hypersecretion, no drug has proven effects on humans. We found that the flavonoid tilianin regulated MUC5AC expression and also inhibited Sp1 phosphorylation. In this study, we investigated how tilianin would modulate EGFR signaling and regulate mucin production. In conclusion, tilianin inhibited MUC5AC expression mediated via modulating the EGFR-MEK-ERK-Sp1 signaling pathway in NCI-H292 human airway epithelial cells. This study may provide the basis for the novel treatment of mucus hypersecretion.

iRhoms; Its Functions and Essential Roles

  • Lee, Min-Young;Nam, Ki-Hoan;Choi, Kyung-Chul
    • Biomolecules & Therapeutics
    • /
    • v.24 no.2
    • /
    • pp.109-114
    • /
    • 2016
  • In Drosophila, rhomboid proteases are active cardinal regulators of epidermal growth factor receptor (EGFR) signaling pathway. iRhom1 and iRhom2, which are inactive homologs of rhomboid intramembrane serine proteases, are lacking essential catalytic residues. These are necessary for maturation and trafficking of tumor necrosis factor-alpha (TNF-${\alpha}$) converting enzyme (TACE) from endoplasmic reticulum (ER) to plasma membrane through Golgi, and associated with the fates of various ligands for EGFR. Recent studies have clarified that the activation or downregulation of EGFR signaling pathways by alteration of iRhoms are connected to several human diseases including tylosis with esophageal cancer (TOC) which is the autosomal dominant syndrom, breast cancer, and Alzheimer's disease. Thus, this review focuses on our understanding of iRhoms and the involved mechanisms in the cellular processes.

Afatinib ameliorates osteoclast differentiation and function through downregulation of RANK signaling pathways

  • Ihn, Hye Jung;Kim, Ju Ang;Bae, Yong Chul;Shin, Hong-In;Baek, Moon-Chang;Park, Eui Kyun
    • BMB Reports
    • /
    • v.50 no.3
    • /
    • pp.150-155
    • /
    • 2017
  • Non-small-cell lung cancer (NSCLC) is the third most common cancer that spreads to the bone, resulting in osteolytic lesions caused by hyperactivation of osteoclasts. Activating mutations in epidermal growth factor receptor-tyrosine kinase (EGF-TK) are frequently associated with NSCLC, and afatinib is a first-line therapeutic drug, irreversibly targeting EGF-TK. However, the effects of afatinib on osteoclast differentiation and activation as well as the underlying mechanism remain unclear. In this study, afatinib significantly suppressed receptor activator of nuclear factor ${\kappa}B$ (RANK) ligand (RANKL)-induced osteoclast formation in bone marrow macrophages (BMMs). Consistently, afatinib inhibited the expression of osteoclast marker genes, whereas, it upregulated the expression of negative modulator genes. The bone resorbing activity of osteoclasts was also abrogated by afatinib. In addition, afatinib significantly inhibited RANKL-mediated Akt/protein kinase B and c-Jun N-terminal kinase phosphorylation. These results suggest that afatinib substantially suppresses osteoclastogenesis by downregulating RANK signaling pathways, and thus may reduce osteolysis after bone metastasis.

Mechanistic insights into differential requirement of receptor dimerization for oncogenic activation of mutant EGFR and its clinical perspective

  • Cho, Jeonghee
    • BMB Reports
    • /
    • v.53 no.3
    • /
    • pp.133-141
    • /
    • 2020
  • The epidermal growth factor receptor (EGFR), a member of the ErbB family (EGFR, ErbB2, ErbB3 and ErbB4), plays a crucial role in regulating various cellular responses such as proliferation, differentiation, and survival. As a result, aberrant activation of EGFR, mostly mediated through different classes of genomic alterations occurring within EGFR, is closely associated with the pathogenesis of numerous human cancers including lung adenocarcinoma, glioblastoma, and colorectal cancer. Thus, specific suppression of oncogenic activity of mutant EGFR with its targeted drugs has been routinely used in the clinic as a very effective anti-cancer strategy in treating a subset of tumors driven by such oncogenic EGFR mutants. However, the clinical efficacy of EGFR-targeted therapy does not last long due to several resistance mechanisms that emerge in the patients following the drug treatment. Thus, there is an urgent need for the development of novel therapeutic tactics specifically targeting mutant EGFR with the focus on the unique biological features of various mutant EGFR. Regarding this point, our review specifically emphasizes the recent findings about distinct requirements of receptor dimerization and autophosphorylation, which are critical steps for enzymatic activation of EGFR and signaling cascades, respectively, among wildtype and mutant EGFR and further discuss their clinical significance. In addition, the molecular mechanisms regulating EGFR dimerization and enzymatic activity by a key negative feedback inhibitor Mig6 as well as the clinical use for developing potential novel drugs targeting it are described in this review.

Isolation of RNA Aptamers Targeting HER-2-overexpressing Breast Cancer Cells Using Cell-SELEX

  • Kang, Hye-Suk;Huh, Yong-Min;Kim, So-Youn;Lee, Dong-ki
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.8
    • /
    • pp.1827-1831
    • /
    • 2009
  • Ligand molecules that can recognize and interact with cancer cell surface marker proteins with high affinity and specificity should greatly aid the development of novel cancer diagnostics and therapeutics. HER-2/ErbB2/Neu (HER-2), a member of the epidermal growth factor receptor family, is specifically overexpressed on the surface of breast cancer cells and serves as both a useful biomarker and a therapeutic target for breast cancer. In this study, we aimed to isolate RNA aptamers that specifically bind to a HER-2-overexpressing human breast cancer cell line, SK-BR-3, using Cell-SELEX strategy. The selected aptamers showed strong affinity to SK-BR-3, but not to MDAMB- 231, a HER-2-underexpressing breast cancer cell line. In addition, we confirmed the specific targeting of HER-2 receptor by aptamers using an unrelated mouse cell line overexpressing human HER-2 receptor. The HER-2-targeting RNA aptamers could become a useful reagent for the development of breast cancer diagnostics and therapeutics.

Dual effects of a CpG-DNAzyme targeting mutant EGFR transcripts in lung cancer cells: TLR9 activation and EGFR downregulation

  • Jang, Dahye;Baek, Yu Mi;Park, Hanna;Hwang, Yeo Eun;Kim, Dong-Eun
    • BMB Reports
    • /
    • v.51 no.1
    • /
    • pp.27-32
    • /
    • 2018
  • Non-small-cell lung cancer (NSCLC) is commonly caused by a mutation in the epidermal growth factor receptor (EGFR) and subsequent aberrant EGFR signaling with uncontrolled kinase activity. A deletion mutation in EGFR exon 19 is frequently observed in EGFR gene mutations. We designed a DNAzyme to suppress the expression of mutant EGFR by cleaving the mutant EGFR mRNA. The DNAzyme (named Ex19del Dz) specifically cleaved target RNA and decreased cancer cell viability when transfected into gefitinib-resistant lung cancer cells harboring EGFR exon 19 deletions. The DNAzyme decreased EGFR expression and inhibited its downstream signaling pathway. In addition to EGFR downregulation, Ex19del Dz containing CpG sites activated Toll-like receptor 9 (TLR9) and its downstream signaling pathway via p38 kinase, causing an immunostimulatory effect on EGFR-mutated NSCLC cells. Thus, dual effects of this DNAzyme harboring the CpG site, such as TLR9 activation and EGFR downregulation, leads to apoptosis of EGFR-mutated NSCLC cells.

Mammary Paget's disease without underlying malignancy of the breast

  • Jang, Nuri;Kang, Suhwan;Bae, Young Kyung
    • Journal of Yeungnam Medical Science
    • /
    • v.35 no.1
    • /
    • pp.99-103
    • /
    • 2018
  • Mammary Paget's disease (MPD) is usually accompanied by underlying breast malignancy; however, a few cases have been reported as only skin lesions without any evidence of malignancy of the breast on imaging tests and microscopic examination of surgical specimen. Here, we describe a 47-year-old woman who visited our hospital who had an eczematous lesion on right nipple and areola for over 10 years. The lesion was diagnosed as Paget's disease by punch biopsy; however, imaging studies demonstrated no breast malignancy or lymph node metastasis. The patient underwent surgery of on the nipple and areola including underlying breast tissue. No underlying malignancy was found upon microscopic examination, except for Paget's disease. Immunohistochemical stains revealed that the tumor cells were positive for cytokeratin 7, and negativity for p63, cytokeratin 5/6, estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2. We report a case of MPD without underlying malignancy. To the best of our knowledge, this is the third case reported in Korea.