• Title/Summary/Keyword: Receiver front-end

Search Result 132, Processing Time 0.022 seconds

RF Spectrum Cognition Technologies for IoT Wireless Sensors (IoT 무선 센서를 위한 RF 스펙트럼 인지 기술)

  • Yoon, Won-Sang;Han, Sang-Min
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.1
    • /
    • pp.122-127
    • /
    • 2016
  • In this paper, new spectrum sensing schemes based on analog/RF front-end processing are introduced for IoT wireless sensor networks. While the conventional approaches for wireless channel cognition have been issued in signal processing area, the RF spectrum cognition concept makes it feasible to achieve cognitive wireless sensor networks (C-WSNs). The spectrum cognition at RF processing is categorized as four kinds of sensing mechanisms. Two recent reseaches are described as promising candidates for the C-WSN. One senses spectrum by the frequency discriminating receiver, the other senses and detects from the frequency selective super-regenerative receiver. The introduced systems with simple and low-power RF architectures play dual roles of channel sensing and demodulation. simultaneously. Therefore, introduced spectrum sensing receivers can be one of the best candidates for IoT wireless sensor devices in C-WSN environments.

The Design of CMOS Multi-mode/Multi-band Wireless Receiver

  • Hwang, Bo-Hyeon;Jeong, Jae-Hun;Yu, Chang-Sik
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.615-616
    • /
    • 2006
  • Nowadays, the need of multi-mode/multi-band transceiver is rapidly increasing, so we design a direct conversion RF front-end for multi-mode/multi-band receiver that support WCDMA/CDMA2000/WIBRO standard. It consists of variable gain reconfigurable LNA and single input double balanced Mixer and complementary differential LC Oscillator. The circuit is implemented in 0.18 um RF CMOS technology and is suitable for low-cost mode/multi-band.

  • PDF

K-Band Low Noise Receiver Module Using MMIC Technology

  • Yu, Kyung-Wan;Uhm, Man-Seok;Yom, In-Bok;Chang, Dong-Pil;Lee, Jae-Hyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.11 no.1
    • /
    • pp.110-115
    • /
    • 2000
  • A K-band GaAs MMIC receiver module has been developed using 0.15 ${\mu}{\textrm}{m}$ HEMT technology process. It incorporates two front end low noise amplifiers, a double balanced diode mixer, and filters. The RF input frequency ranges 20.1 to 21 GHz and the IF output 1.1 to 2 GHz. Test results show an overall conversion gain of more than 27 dB, and less than a 2.2 dB noise figure. The image-rejection ratio greater than 21 dB has been obtained. The isolation between RF and IF ports is better than 27 dB, and between LO and IF is more than 50 dB.

  • PDF

Design and implementation of power-controlled front-end module for direct conversion receiver (전력제어 직접변환수신 6단자 소자 설계 및 제작)

  • Kim, Young-Wan
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2391-2396
    • /
    • 2010
  • The power-controlled six-port element that can control the local oscillator signal power and receiving RF signal power was designed and implemented in this paper. The direct conversion six-port element configuration was proposed, which provides the constant six-port output power by controlling the six-port input power with various signal strength. The direct conversion six-port element protects the power detector element of six-port receiver from the saturation status and compensates the transmission performance degradation. For implementation of power-controlled six-port element, the power-controlled six-port element including the power controller was analyzed. The implemented power-controlled six-port element shows the power control capability of 36 dB and gain imbalance of about 1.6 dB, phase imbalance of about $4^{\circ}$ in the frequency range of 1.69 GHz. The measured results show the good performance as direct conversion front-end element.

Dynamic Range Improvement of Digital Receiver (디지털 수신기의 Dynamic Range 개선방안)

  • Hwang, Hee-Geun;Rhee, Young-Chul
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.5 no.2
    • /
    • pp.61-67
    • /
    • 2012
  • In this paper, In this paper, we consider a dynamic range in the frequency converter to obtain a high conversion gain and linearity while operating area proposed to broaden the design. Super-heterodyne RF Front-End style was applied to the active mixer stage, GaAs devices were used. Circuit design easy and simple forms benefit circuit is constructed in the drain mixer, passive mixer with the operating area were compared and analyzed. The simulation results of the conversion gain of 2.4dB and 0.2dBm about a gain-compression point, and showed the dynamic range of 71.9dB, when compared with passive mixers, dynamic range of approximately 6dB improvement was identified. Measurements of an approximately 2dB conversion gain and-1.0dBm of the gain-compression point, and confirmed that the active area of 71.1dB. When compared with passive mixers, dynamic range of is reduced by approximately 8dB has been improved.

Design and Fabrication of a Multi-Function Circuit to Implement Hybrid-Conversion RF Front-End for Broadband and Multiband System (광대역 및 다중 대역 시스템용 혼성 변환 방식 RF 전단부 구현을 위한 다중 기능 회로의 설계 및 제작)

  • Go, Min-Ho;Ju, Young-Rim;Jo, Yun-Hyun;Park, Hyo-Dal
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.3
    • /
    • pp.292-300
    • /
    • 2010
  • In this paper, we propose a RF front-end architecture based on hybrid conversion which is available to receive both broadband and multiband DVB-H receiver, and a multi-function circuit for implementing the RF front-end is fabricated. A multi-function circuit is operated as a sub-harmonic mixer mode in the case of receiving a broadband VHF/UHF band, which show a conversion loss of -10.0 dB, noise figure of 7.0 dB and IIP3 of 2.0 dBm. On the other hand, it is performed as a attenuation mode with a insertion loss of -10.0 dB in receiving a multiband, L-band.

Design of Cascode HBT-MMIC Amplifier with High Cain and Low Noise Figure (고이득, 저잡음지수를 갖는 캐스코드 HBT-MMIC 증폭기 설계)

  • Rhee Young-Chul
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.647-653
    • /
    • 2005
  • According to the design concept of microwave front-end, a low noise amplifier block using HBT cascode topology is proposed to provide high gain and low noise figure with low bias current. We has implemented MMIC-LNA with a modified configuration using inductors to show low noise at the emitter and base of cascoded HBT-MMIC amplifier. The measured performance of the designed MMIC-LNA at 3.7GHz are a gain of 19dB, noise figure of 2.7dB and image rejection of 35dBc using a supply of 3mA and 2.7V. We can convinced that cascoded amplifier block to fulfill a high gain, low noise and image rejection if microwave front-end receiver is designed by cascode MMEC-LNA with the active image rejection filter.

A Design of CMOS Signal Processing Adaptive Filter for DSL Modem (DSL 모뎀용 CMOS 신호처리 적응필터 설계)

  • Lee Geun-Ho;Lee Jong-Inn
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.7
    • /
    • pp.1424-1428
    • /
    • 2004
  • In this paper, CMOS analog filters for use in the Analog front End of digital subscriber loop(DSL) chip set are proposed. Designed filters contain receiver continuous-time filters which are composed of lowpass and highpass functions. And their cutoff frequency are 138H1z and 1.1MHz respectively. A low-voltage gm-c integrator is improved and used to design filters. Desisned filters are verified by HSPICE simulation with the 0.25${\mu}m$ CMOS n-well parameter.

Implementation of low-noise, wideband ultrasound receiver for high-frequency ultrasound imaging (고주파수 초음파 영상을 위한 저잡음·광대역 수신 시스템 구현)

  • Moon, Ju-Young;Lee, Junsu;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.36 no.4
    • /
    • pp.238-246
    • /
    • 2017
  • High frequency ultrasound imaging typically suffers from low sensitivity due to the small aperture of high frequency transducers and shallow imaging depth due to the frequency-dependent attenuation of ultrasound. These limitations should be overcome to obtain high-frequency, high- resolution ultrasound images. One practical solution to the problems is a high-performance signal receiver capable of detecting a very small signal and amplifying the signal with minimal electronic noise addition. This paper reports a recently developed low-noise, wideband ultrasound receiver for high-frequency, high-resolution ultrasound imaging. The developed receiver has an amplification gain of up to 73 dB and a variable amplification gain range of 48 dB over an operating frequency of 80 MHz. Also, it has an amplification gain flatness of ${\pm}1dB$. Due to these high performances, the developed receiver has a signal-to-noise ratio of at least 8.4 dB and a contrast-to-noise ratio of at least 3.7 dB higher than commercial receivers.

On-chip Inductor Modeling in Digital CMOS technology and Dual Band RF Receiver Design using Modeled Inductor

  • Han Dong Ok;Choi Seung Chul;Lim Ji Hoon;Choo Sung Joong;Shin Sang Chul;Lee Jun Jae;Shim SunIl;Park Jung Ho
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.796-800
    • /
    • 2004
  • The main research on this paper is to model on-chip inductor in digital CMOS technology by using the foundry parameters and the physical structure. The s-parameters of a spiral inductor are extracted from the modeled equivalent circuit and then compared to the results obtained from HFSS. The structure and material of the inductor used for modeling in this work is identical with those of the inductor fabricated by CMOS process. To show why the modeled inductor instead of ideal inductor should be used to design a RF system, we designed dual band RF front-end receiver and then compared the results between when using the ideal inductor and using the modeled inductor.

  • PDF