• Title/Summary/Keyword: Receiver IC

Search Result 69, Processing Time 0.031 seconds

Design of 250-Mb/s Low-Power Fiber Optic Transmitter and Receiver ICs for POF Applications

  • Park, Kang-Yeob;Oh, Won-Seok;Choi, Jong-Chan;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.11 no.3
    • /
    • pp.221-228
    • /
    • 2011
  • This paper describes 250-Mb/s fiber optic transmitter and receiver ICs for plastic optical fiber applications using a$ 0.18-{\mu}m$ CMOS technology. Simple signal and light detection schemes are introduced for power reduction in sleep mode. The transmitter converts non-return-to-zero digital data into 650-nm visible-red light signal and the receiver recovers the digital data from the incident light signal through up to 50-m plastic optical fiber. The transmitter and receiver ICs occupy only 0.62 $mm^2$ of area including electrostatic discharge protection diodes and bonding pads. The transmitter IC consumes 23 mA with 20 mA of LED driving currents, and the receiver IC consumes 16 mA with 4 mA of output driving currents at 250 Mb/s of data rate from a 3.3-V supply in active mode. In sleep mode, the transmitter and receiver ICs consume only 25 ${\mu}A$ and 40 ${\mu}A$, respectively.

Preamplier design for IR receiver IC (적외선 수신모듈IC용 전치증폭기의 설계)

  • Hong, Young-Uk;Ryu, Seung-Tak;Choi, Bae-Gun;Kim, Sang-Kyung;Baik, Sung-Ho;Cho, Gyu-Hyeong
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.3124-3126
    • /
    • 2000
  • The application of IR(Infrared) communication is very wide and IR receiver has become a standard of home entertainment. A preamplifier with single 5V supply was designed for IR receiver IC. To operate at long distance, receiver IC should have high gain and low noise characteristic. To provide constant output signal magnitude, independent of transciever distance, gain limiting stage is needed. And to cut-off DC noise component effectively, large resistance and capacitance are required. Transimpedance type preamplifier, and diode limiting amplifier, and current limiting amplifier were designed. It is another function of current limiting amplifier that transforms single input signal to differential output signal. Using AMS BiCMOS model, both BJT version and MOS version was designed. Total power consumption is O.lmW, and IC size is $0.3mm^2$

  • PDF

Performance of Dual Polarized MIMO System using Six-Port Receiver for Cognitive Radio

  • Lee Sang-Yub;Yang Wan-Cheol;Lee Jeong-Suk;Kim Hak-Sun
    • Broadcasting and Media Magazine
    • /
    • v.11 no.1
    • /
    • pp.78-85
    • /
    • 2006
  • Cognitive radio is a paradigm for wireless communication in which either network of wireless node itself changes particular transmission or reception parameters to execute its tasks efficiently without interfering with the licensed users. This paper represents a performance of the cognitive radio technology on dual polarized MIMO system using six-port receiver. Six-port technology is well known direct conversion receiver. In this paper, a six-port phase discriminator based polarization signal separation is shown. That is, the SER(Symbol Error Rate) performance is improved using polarization separator and simple receiver architecture is proposed applying six-port receiver. The six-port technology has priority to adapt changeable frequency system and variable environments for cognitive radio. In general, dual polarized MIMO system has good capacity and quality using polarization separator [1].

Performance Evaluation of Channel Estimation and Interference Cancellation Techniques for Multiuser with Transmitter Diversity System (송신 다이버시티를 가진 다중 사용자 시스템에서 채널 추정 및 간섭 제거 기법들의 성능 평가)

  • 유형준;이상문;최형진
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.7A
    • /
    • pp.641-650
    • /
    • 2002
  • Space-Time Block Code(STBC) provides full diversity gains with simple linear processing at the receiver. Interference Cancellation(IC) techniques in system using STBC improve the capacity and performance of wireless systems with co-channel users. Various IC techniques, Minimum Mean-Squared Error(MMSE) and Zero-Forcing(ZF) algorithms in system with STBC were proposed in the literatures in multiuser environment. The performance of these IC techniques were simulated by assuming perfect channel state information(CSI) of multiuser at the receiver. However, in practice it is difficult to know perfect CSI of multiuser at the receiver. Thus, channel estimation scheme is essential at the receiver. Also SNR estimation scheme is required to operate the MMSE IC algorithm. In this paper, we present estimation schemes of CSI and SNR using training sequences. Through extensive computer simulation, we compare and evaluate the performance of IC techniques using the proposed CSI and SNR estimation techniques.

A Study on the New Code Grouping Interference Cancellation for WCDMA Systems (WCDMA 시스템을 위한 새로운 코드 그룹화 간섭제거기)

  • Kim, Nam-Sun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.1A
    • /
    • pp.16-23
    • /
    • 2008
  • In this paper, we propose a new code grouping interference cancellation(IC) receiver for multirate wideband code division multiple access(WCDMA) system based on orthogonal variable spreading factor(OVSF) code. The users are assigned different lengths of OVSF codes as a spreading code according to their data rates and divide the active users having same representative code split into a group for effective cancellation. The code grouping IC receiver performs cancellation between the groups first and cancellation within group. This proposed IC receiver can cancel the interferences using desired user's code information and then desired signals are detected. The results show that the large improvement in performance can be attained by groupwise IC scheme and we can make the effective systems compare to conventional ones.

Interference Cancellation On-Channel Regenerative Repeater Laboratory Test for ATSC Terrestrial Broadcasting (ATSC 지상파 방송을 위한 간섭제거 동일 채널 재생 중계기 성능평가)

  • Kim, Yong-Seok;Ki, Jang-Geun;Lee, Kyu-Tae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.2
    • /
    • pp.43-52
    • /
    • 2012
  • This paper presents and analyzes laboratory test results of Interference Cancellation Digital On Channel Regenerative Repeater(IC-DOCR) to broadcast digital television signals in the Advanced Television Systems Committee(ATSC) transmission systems using single frequency networks(SFN). IC-DOCR laboratory test is classified to receiver test, transmitter test, and feedback interference cancellation test. The receiver part includes random noise, single echo, multi-path ensembles, and adjacent channel interference test. The transmitter part includes out-of channel emission, equality of transmitting signal, and phase noise test. By the laboratory test, the receiver part of the IC-DOCR eliminates 28dB of feedback signal higher than the received signal and has 17.8dB at TOV(Threshold Of Visibility) under random noise environment. Also, the transmitter part satisfies the specification of US FCC(Federal Communications Commission) as well as maintains good output signal quality for guaranteeing more than SNR 30dB.

Compact 2.5 Gb/s Burst-Mode Receiver with Optimum APD Gain for XG-PON1 and GPON Applications

  • Kim, Jong-Deog;Le, Quan;Lee, Mun-Seob;Yoo, Hark;Lee, Dong-Soo;Park, Chang-Soo
    • ETRI Journal
    • /
    • v.31 no.5
    • /
    • pp.622-624
    • /
    • 2009
  • This letter presents a compact 2.5 Gb/s burst-mode receiver using the first reported monolithic amplifier IC developed with 0.25 ${\mu}m$ SiGe BiCMOS technology. With optimum avalanche photodiode gain, the receiver module can obtain a fast response, high sensitivity and wide dynamic range, satisfying the overhead timing and various power specifications for a 2.5 Gb/s next-generation passive optical network (PON), as well as a legacy 1.25 Gb/s PON in the upstream.

(AlGaAs/GaAs HBT IC Chipset for 10Gbit/s Optical Receiver) (10Gbit/s 광수신기용 AlGaAs/GaAs HBT IC 칩 셋)

  • 송재호;유태환;박창수;곽봉신
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.36C no.4
    • /
    • pp.45-53
    • /
    • 1999
  • A pre amplifier, a limiting amplifier, and a decision IC chipset for 10Gbit/s optical receiver was implemented with AIGaAs/GaAs HBT(Heterojunction Bipolar Transistor) technology. The HBT allows a cutoff frequency of 55GHz and a maximum oscillation of 45GHz. An optical receiver front-end was implemented with the fabricated pre amplifier IC and a PIN photodiode. It showed 46dB$\Omega$, gain and $f_{3db}$ of 12.3GHz. The limiting amplifier Ie showed 27dB small signal gain, $f_{3db}$ of 1O.6GHz, and the output is limited to 900mVp-p from 20mVp-p input voltage. The decision circuit IC showed 300-degree phase margin and input voltage sensitivity of 47mVp-p at 1OGbit/s.

  • PDF

A High Swing Range, High Bandwidth CMOS PGA and ADC for IF QPSK Receiver Using 1.8V Supply

  • Lee, Woo-Yol;Lim, Jong-Chul;Park, Hee-Won;Hong, Kuk-Tae;Lee, Hyeong-Soo
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.5 no.4
    • /
    • pp.276-281
    • /
    • 2005
  • This paper presents a low voltage operating IF QPSK receiver block which is consisted of programmable gain amplifier (PGA) and analog to digital converter. This PGA has 6 bit control and 250MHz bandwidth, $0{\sim}20\;dB$ gain range. Using the proposed PGA architecture (low distortion gain control switch block), we can process the continuous fully differential $0.2{\sim}2.5Vpp$ input/output range and 44MHz carrier with 2 MHz bandwidth signal at 1.8V supply voltage. Using the sub-sampling technique (input freq. is $44{\sim}46MHz$, sampling freq. is 25MHz), we can process the IF QPSK signal ($44{\sim}46MHz$) which is the output of the 6 bit PGA. We can get the SNDR 35dB, which is the result of PGA and ADC at full gain mode. We fabricated the PGA and ADC and the digital signal processing block of the IF QPSK with the 0.18um CMOS MIM process 1.8V Supply.

Prediction of the Intermodulation Interference on the AMPS Receiver Exposed to Radiation from the Low Power Radio Devices (소출력 무선기기의 방사에 노출된 AMPS 수신기의 상호변조 간섭 예측)

  • Kim, Che-Young;Kim, Dang-Oh
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1242-1250
    • /
    • 2008
  • In this paper, we predicted the radiation field strength from the low power radio devices to force the radio interference on the AMPS receiver. The predicted value of 79.13[$dB{\mu}V/m$] is the upper value of radiation against the intermodulation interference emanated from the low power radio devices. To show the validity of the suggested values theoretical analysis on intermodulation and modeling of the AMPS receiver are performed, and also measurements on the AMPS receiver IC are carried out. The resultant numerals show the good match between them within the allowable tolerances.