• Title/Summary/Keyword: Received signal strength

Search Result 425, Processing Time 0.029 seconds

Design of a Broadband Window Antenna Using a Parallel T-Matching Network (병렬 T-정합 회로를 이용한 차량 유리 부착형 광대역 안테나 설계)

  • Kim, Yoon-Geon;Kay, Young-Chul;Ji, Sung-Hwan;Choo, Ho-Sung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.23 no.1
    • /
    • pp.122-130
    • /
    • 2012
  • In this paper, we propose a broadband vehicle antenna that can operate at the WiBro band(2.3~2.4 GHz) for a wireless internet service. The feeding of the proposed antenna consists of two T-matching networks on both side of the polyarcylate substrate, and the two T-matching networks are connected through via holes. The designed antenna was built and installed on a rear window of a commercial sedan, and the antenna performances, such as the reflection coefficients and the radiation gain are measured in the open-sight area. The received signal strength of the designed antenna was also tested in a strong field area as well as in a weak field area. The measurement results show the matching bandwidth($S_{11}$ <10 dB) of about 300 MHz in the WiBro band and the average gain of about -5.13 dBi along the azimuth direction.

Design of a Low-Power RF Transceiver for Small UAVs Using Switching Power (전원 스위칭을 이용한 저전력 소형무인기용 RF 송수신기 설계)

  • Kim, Hyo-Jong;Lee, Jong-Wook
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.779-787
    • /
    • 2017
  • In this paper, we designed a RF transceiver for small unmanned aerial vehicle(UAV) using power switching method. To apply for the UAV, several characteristics such as size, weight, and power consumption are very important. To reduce power consumption, we propose a new power switching method. Using the proposed method, we fabricated the RF transceiver needed to establish the data link for a small UAV. The fabricated RF transceiver shows an output power of +25 dBm, a noise figure of 4.56 dB and a received signal strength of -100 dBm. By performing power measurement of proposed switching method, 25 % of power could be reduced. The size of the fabricated RF transceiver is $100{\times}60{\times}5.7mm^3$ and the weight is as small as 38 g.

RSSI-Based Indoor Localization Method Using Virtually Overlapped Visible Light (가상 가시광 중첩을 이용한 RSSI 기반의 실내 측위법)

  • Kim, Dae Young;Yi, Keon Young
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.12
    • /
    • pp.1697-1703
    • /
    • 2014
  • In this paper, we propose an indoor RSSI (received signal strength indication)-based localization method that uses virtually overlapped visible light with an indoor LED lighting system. In our system, a photodiode (PD) measures the RSSI from LED lamps that blink in one row or column units. Subsequently, the RSSI is used to obtain the horizontal distances between the LED lamps and the receiver with the predetermined characteristics curve, R-D curve, that represents the relation between the RSSI and the horizontal distances. When the controlled LED lamps blink in one row or column units, the R-D curve at the border of the LED lamps is different because of the weak lighting, which results in the position sensing error of the receiver. The deviation of the optical power of each LED also causes the error. To solve these problems, we propose a method that overlaps the visible light through the numerical operation at the receiver side without any modification of the light source side. Our proposed method has been simulated in a room measuring $1.2{\times}1.2{\times}1.8m^3$ considering the effect of the error on the optical power of the LED. The simulation result shows that the proposed method eliminates the error condition with the R-D curve and achieves an average positioning error of 13.4 mm under the error rate 3% of the optical power.

Smart Phone Sensor-Based Indoor Location Tracking System for Improving the Location Error of the Radio Environment (무선 환경의 위치 정보 오차 개선을 위한 스마트폰 센서 기반 실내 위치 추적 시스템)

  • Lee, Dae-Young;Kang, Young-Heung
    • Journal of Advanced Navigation Technology
    • /
    • v.19 no.1
    • /
    • pp.74-79
    • /
    • 2015
  • In this paper, in order to improve the error is utilized to location tracking the smart sensor detects a walking information user, RSSI is to provide an indoor position tracking system that is capable of correcting an error in terms weak. The acceleration sensor is able to detect the activity in the user walking and detects the number of step and the moving distance using the same. The Direction sensor is utilized as a digital compass, to detect the moving direction of the user. As a result of detecting the walking information using the sensor, it can be showed that this proposed indoor positioning system has a high degree of accuracy for the number of steps and the movement direction. Therefore, this paper shows that the proposed technique can correct the error of the location information to be problem in the conventional indoor location system which uses the only Wi-Fi APs by estimating the user's movement direction and distance using the sensors in smartphone without an additional equipment and cost.

Hard Handover Algorithm for Self Optimization in 3GPP LTE System (3GPP LTE 시스템에서 기지국 구성 자동 설정 동작을 위한 하드 핸드오버 알고리즘)

  • Lee, Doo-Won;Hyun, Kwang-Min;Kim, Dong-Hoi
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.3A
    • /
    • pp.217-224
    • /
    • 2010
  • In this paper, we propose a hard handover algorithm for a base station's self-optimization, one of the automatic operational technologies for the 3GPP LTE systems. The proposed algorithm simultaneously considers a mixed target sell selection method for optimal selection and a multiple parameter based active hysteresis method with the received signal strength from adjacent cells and the cell load information of the candidate target cells from information exchanges between eNBs through X2 interface. The active hysteresis method chooses optimal handover hysteresis value considering the costs of the various environmental parameters effect to handover performance. The algorithm works on the optimal target cell and the hysteresis value selections for a base station's automatic operational optimization of the LTE system with the gathered informaton effects to the handover performance. The simulation results show distinguished handover performances in terms of the most important performance indexes of handover, handover failure rate and load balancing.

Mapping USN Route by Integrating Multiple Spatial Parameters into Radio Propagation Model (다중 공간변수와 전파예측 모델을 통합한 USN 중계 경로망도 제작)

  • Kim, Jin-Taek;Um, Jung-Sup
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.1
    • /
    • pp.51-63
    • /
    • 2008
  • Previous studies for routing In USN (Ubiquitous Sensor Networks) appear to be unreliable due to the dependence on non-spatial data and the lack of map overlay analysis. Multiple spatial parameters and radio propagation modeling techniques were integrated to derive RSSI (Received Signal Strength Indicator) value between route nodes and produce a highly reliable path map. It was possible to identify area-wide patterns of USN route subject to many different Influences (e.g. the specific effects of radio blocking factors such as the visible area, road area, cell duplicated area, and building density), which cannot be acquired by traditional non-spatial modeling. The quantitative evidence concerning the USN route for individual cell as well as entire study area would be utilized as major tools to visualize paths in real-time and to select alternative path when failure or audition of route node occurs.

  • PDF

Rethinking of the Uncertainty: A Fault-Tolerant Target-Tracking Strategy Based on Unreliable Sensing in Wireless Sensor Networks

  • Xie, Yi;Tang, Guoming;Wang, Daifei;Xiao, Weidong;Tang, Daquan;Tang, Jiuyang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.6 no.6
    • /
    • pp.1496-1521
    • /
    • 2012
  • Uncertainty is ubiquitous in target tracking wireless sensor networks due to environmental noise, randomness of target mobility and other factors. Sensing results are always unreliable. This paper considers unreliability as it occurs in wireless sensor networks and its impact on target-tracking accuracy. Firstly, we map intersection pairwise sensors' uncertain boundaries, which divides the monitor area into faces. Each face has a unique signature vector. For each target localization, a sampling vector is built after multiple grouping samplings determine whether the RSS (Received Signal Strength) for a pairwise nodes' is ordinal or flipped. A Fault-Tolerant Target-Tracking (FTTT) strategy is proposed, which transforms the tracking problem into a vector matching process that increases the tracking flexibility and accuracy while reducing the influence of in-the-filed factors. In addition, a heuristic matching algorithm is introduced to reduce the computational complexity. The fault tolerance of FTTT is also discussed. An extension of FTTT is then proposed by quantifying the pairwise uncertainty to further enhance robustness. Results show FTTT is more flexible, more robust and more accurate than parallel approaches.

The Analysis of Transmission Power Control Model for Energy Efficiency in Body Sensor Systems (에너지 효율을 위한 인체 센서 시스템의 전송 전력 조절 모델 분석)

  • Hong, Jin-A;Kim, Namgi
    • Journal of Internet Computing and Services
    • /
    • v.15 no.4
    • /
    • pp.1-8
    • /
    • 2014
  • In wireless body sensor system(WB-SNSs), unlike existing sensor network system, the size of device is small and amount of battery is considerably limited. And various channel environments can be made by link channel characteristic, human movements, sensor placements, transmission power control(TPC) algorithms and so on. In this paper, therefore we take diverse experiments with totally considerated environments to overcome these restrictions and to manage the energy efficiently and find the value of target received signal strength indicator(RSSI) based on diverse factors such as human movements, sensor placements, and TPC algorithms. And we conduct analysis in terms of energy consumption and packet delivery rate(PDR) based on the experimental results. Through these analysis, we compare and evaluate the efficiency according to setup values of Target RSSI and Target RSSI range suitable for wireless body sensor network system.

Reliable Multicast MAC Protocol with Low Probability of Detection for Survivability in Tactical Ad-hoc Networks (생존성 향상을 위해 신뢰성 및 저피탐을 보장하는 멀티캐스팅 MAC 프로토콜 기법)

  • Kim, Jeong-Hun;Jung, Jun-Woo;Kim, Jung-Bin;Lim, Jae-Sung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.11B
    • /
    • pp.1685-1695
    • /
    • 2010
  • In this paper, we propose a new reliable multicast MAC protocol over the IEEE 802.11-based tactical ad hoc networks. The major contribution compared to the previous reliable multicast schemes using consecutive CTSs/ACKs is that the proposed scheme can send multiple CTS/ACK messages concurrently assisted by MC-DS/CDMA mechanisms. When multiple receivers receive the RTS/DATA message from a sender, they respond with the CTS/ACK message spread with pre-assigned code in the same time interval. The proposed scheme can reduce the overhead of multiple CTSs/ACKs. It is also possible to alleviate the received signal strength at the enemy detector and thus it improves low probability of detection performance. Through simulations and analysis, the proposed scheme outperforms that of the multiple CTSs/ACks in terms of the throughput, transmission delay and low probability of detection.

Modeling of Train Radio Propagation Affected by Ground Reflected Wave in High-speed Railway (고속철도 지면반사파를 고려한 열차무선 전파모델)

  • Bae, Sung-Ho;Song, Ki-Hong;Choi, Kyu-Hyoung
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.460-465
    • /
    • 2013
  • Radio propagation in a high-speed railway is affected by ground reflective waves that are due to irregular reflection by the railway track, which consists of rails, sleepers, and gravel. This paper provides a train radio propagation model that simulates an irregular track reflective wave as a random variable. A simulation study using the train radio propagation model shows that the path loss exponent is around 3.0, indicating a reduced path loss compared to the value of 4.0 in the general mobile radio environment. Regressive analysis of the received signal strength indicators measured in the Gyeongbu high-speed railway showed the results identical to those of the simulation. These results confirm the train radio propagation model and can be applied to the coverage estimation and the design of a train radio network.