• 제목/요약/키워드: Recall time

검색결과 332건 처리시간 0.028초

뉴스 정보의 단위 구조화를 위한 효율적인 앵커구간 추출 알고리즘 (An Efficient Anchor Range Extracting Algorithm for The Unit Structuring of News Data)

  • 전승철;박성한
    • 방송공학회논문지
    • /
    • 제6권3호
    • /
    • pp.260-269
    • /
    • 2001
  • 본 논문은 뉴스의 단위 구조화를 위해서 뉴스 동영상에 존재하는 앵커구간을 구분해내는 효율적인 알고리즘을 제안한다. 이를 위하여 본 논문은 단순히 장면 전환 지점을 이용하기 보다는 화면에 존재하는 앵커의 얼굴을 이용한다. 앵커구간에서는 앵커 얼 굴 위치의 프레임 변화량을 계산하는 FRFD(Face Region Frame difference)를 이용하여 앵커구간의 마지막을 찾는다. 한편 비앵 커구간에서는 앵커 얼굴 추출을 이용하여 앵커구간의 시작점을 찾는다. 앵커 얼굴 추출은 처리 속도를 빠르게 하기 위해서 MPEG .동영상 부분 복호화를 통한 대략적 분석과 전체 복호화를 통해 얻어진 앵커 얼굴 후보를 검증하는 두 단계로 이루어져 있다. 이렇게 얻어진 앵커구간은 뉴스 분석의 기본 단계에서 이용이 가능하다. 특히 빠른 속도와 높은 recall 비율은 실제 뉴스 서비스 활용에 적당하다.

  • PDF

공간 위치 정보를 적합성 피드백을 위한 가중치로 사용하는 영역 기반 이미지 검색 시스템 (Region-Based Image Retrieval System using Spatial Location Information as Weights for Relevance Feedback)

  • 송재원;김덕환;이주홍
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권4호
    • /
    • pp.1-7
    • /
    • 2006
  • 최근 이미지 검색은 검색의 정확성을 높이고자 사용자의 요구를 반영하는 적합성 피드백에 관한 연구가 활발히 진행되고 있다. 본 논문은 이미지 검색 시 나타나는 고수준 개념과 저수준 특징 사이의 의미적 격차를 줄이기 위하여 적합성 피드백에 기반한 영역 기반 이미지 검색의 가중치 기법에 대해서 논의하고 새로운 가중치 기법을 제안한다. 새롭게 제시된 가중치 기법은 한 이미지에 존재하는 영역들의 공간적 위치에 따라 영역의 중요성을 결정한다. 실험 결과는 본 논문에서 제시된 가중치 기법이 평균 재현율에 있어서 크기 백분율 가중치 기법에 비해 약 18%, 역 이미지 빈도수를 적용한 영역 빈도수 가중치 기법에 비해 약 11% 가량 높게 나타나는 것을 보이고 있으며, 검색 시간에 있어서도 영역 빈도수 가중치에 비해 약 1/10인 것을 보이고 있다.

  • PDF

고해상도 원격탐사 영상을 이용한 YOLOv5기반 굴뚝 탐지 (YOLOv5-based Chimney Detection Using High Resolution Remote Sensing Images)

  • 윤영웅;정형섭;이원진
    • 대한원격탐사학회지
    • /
    • 제38권6_2호
    • /
    • pp.1677-1689
    • /
    • 2022
  • 대기오염은 동식물의 건강에 장·단기적으로 해로운 영향을 미치는 사회적 문제이다. 굴뚝은 대기를 오염시키는 대기오염물질의 주배출원으로 그 위치와 종류를 탐지하고 모니터링할 필요가 있다. 대기오염물질을 배출하는 굴뚝이 위치한 발전소 및 산업단지는 접근성이 많이 떨어지고 부지가 넓어 직접 모니터링하기에는 비용적, 시간적으로 비효율적이다. 따라서 최근에는 원격탐사 자료를 이용하여 굴뚝을 탐지하는 연구가 수행되고 있다. 본 연구에서는 중국 베이징, 톈진 허베이 성에 위치한 발전소를 대상으로 구축된 BUAA-FFPP60 오픈 데이터 세트를 활용하여 YOLOv5기반의 굴뚝 탐지 모델을 제작하였다. 탐지 모델의 성능을 향상시키기 위하여 데이터 분할과 데이터 증강기법을 적용하였으며, 최적의 모델 제작을 위한 학습 전략을 세웠다. 학습이 완료된 모델은 precision, recall과 같은 각종 지표를 통해 성능을 확인하였으며, 최종적으로 동일한 데이터 세트를 사용한 기존 연구와의 비교를 통해 모델의 성능을 평가하였다.

Vibration Anomaly Detection of One-Class Classification using Multi-Column AutoEncoder

  • Sang-Min, Kim;Jung-Mo, Sohn
    • 한국컴퓨터정보학회논문지
    • /
    • 제28권2호
    • /
    • pp.9-17
    • /
    • 2023
  • 본 논문에서는 베어링의 결함 진단을 위한 단일 클래스 분류의 진동 이상 탐지 시스템을 제안한다. 베어링 고장으로 인해 발생하는 경제적 및 시간적 손실을 줄이기 위해 정확한 결함 진단시스템은 필수적이며 문제 해결을 위해 딥러닝 기반의 결함 진단 시스템들이 널리 연구되고 있다. 그러나 딥러닝 학습을 위한 실제 데이터 채집 환경에서 비정상 데이터 확보에 어려움이 있으며 이는 데이터 편향을 초래한다. 이에 정상 데이터만 활용하는 단일 클래스 분류 방법을 활용한다. 일반적인 방법으로는 AutoEncoder를 통한 압축과 복원 과정을 학습하여 진동 데이터의 특성을 추출한다. 추출된 특성으로 단일 클래스 분류기를 학습하여 이상 탐지를 실시한다. 하지만 이와 같은 방법은 진동 데이터의 주파수 특성을 고려하지 않아서 진동 데이터의 특성을 효율적 추출할 수 없다. 이러한 문제를 해결하기 위해 진동 데이터의 주파수 특성을 고려한 AutoEncoder 모델을 제안한다. 분류 성능은 accuracy 0.910, precision 1.0, recall 0.820, f1-score 0.901이 나왔다. 주파수 특성을 고려한 네트워크 설계로 기존 방법들보다 우수한 성능을 확인하였다.

Estimation of Heading Date of Paddy Rice from Slanted View Images Using Deep Learning Classification Model

  • Hyeokjin Bak;Hoyoung Ban;SeongryulChang;Dongwon Gwon;Jae-Kyeong Baek;Jeong-Il Cho;Wan-Gyu Sang
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.80-80
    • /
    • 2022
  • Estimation of heading date of paddy rice is laborious and time consuming. Therefore, automatic estimation of heading date of paddy rice is highly essential. In this experiment, deep learning classification models were used to classify two difference categories of rice (vegetative and reproductive stage) based on the panicle initiation of paddy field. Specifically, the dataset includes 444 slanted view images belonging to two categories and was then expanded to include 1,497 images via IMGAUG data augmentation technique. We adopt two transfer learning strategies: (First, used transferring model weights already trained on ImageNet to six classification network models: VGGNet, ResNet, DenseNet, InceptionV3, Xception and MobileNet, Second, fine-tuned some layers of the network according to our dataset). After training the CNN model, we used several evaluation metrics commonly used for classification tasks, including Accuracy, Precision, Recall, and F1-score. In addition, GradCAM was used to generate visual explanations for each image patch. Experimental results showed that the InceptionV3 is the best performing model in terms of the accuracy, average recall, precision, and F1-score. The fine-tuned InceptionV3 model achieved an overall classification accuracy of 0.95 with a high F1-score of 0.95. Our CNN model also represented the change of rice heading date under different date of transplanting. This study demonstrated that image based deep learning model can reliably be used as an automatic monitoring system to detect the heading date of rice crops using CCTV camera.

  • PDF

RNN을 이용한 동작기록 마이닝 기반의 추천 방법 (A Code Recommendation Method Using RNN Based on Interaction History)

  • 조희태;이선아;강성원
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제7권12호
    • /
    • pp.461-468
    • /
    • 2018
  • 개발자들은 소프트웨어 개발과 유지보수 작업 중 하나의 코드를 수정하는데 들이는 시간보다 이를 위해 코드를 탐색하고 이해하는데 더 많은 시간을 소모한다. 코드를 탐색하는 시간을 줄이기 위하여 기존 연구들은 데이터 마이닝과 통계적 언어모델 기법을 이용하여 수정할 코드를 추천하여 왔다. 그러나 이 경우 모델의 학습 데이터와 입력되는 데이터가 정확하게 일치하지 않으면 추천이 발생하지 않는다. 이 논문에서 우리는 딥러닝의 기법 중 하나인 Recurrent Neural Networks에 동작기록을 학습시켜 기존 연구의 상기 문제점 없이 수정할 코드의 위치를 추천하는 방법을 제안한다. 제안 방법은 RNN과 동작기록을 활용한 추천 기법으로 평균 약 91%의 정확도와 71%의 재현율을 달성함으로써 기존의 추천방법보다 코드 탐색 시간을 더욱 줄일 수 있게 해 준다.

Few-Shot Learning을 사용한 호스트 기반 침입 탐지 모델 (Host-Based Intrusion Detection Model Using Few-Shot Learning)

  • 박대경;신동일;신동규;김상수
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제10권7호
    • /
    • pp.271-278
    • /
    • 2021
  • 현재 사이버 공격이 더욱 지능화됨에 따라 기존의 침입 탐지 시스템(Intrusion Detection System)은 저장된 패턴에서 벗어난 지능형 공격을 탐지하기 어렵다. 이를 해결하려는 방법으로, 데이터 학습을 통해 지능형 공격의 패턴을 분석하는 딥러닝(Deep Learning) 기반의 침입 탐지 시스템 모델이 등장했다. 침입 탐지 시스템은 설치 위치에 따라 호스트 기반과 네트워크 기반으로 구분된다. 호스트 기반 침입 탐지 시스템은 네트워크 기반 침입 탐지 시스템과 달리 시스템 내부와 외부를 전체적으로 관찰해야 하는 단점이 있다. 하지만 네트워크 기반 침입 탐지 시스템에서 탐지할 수 없는 침입을 탐지할 수 있는 장점이 있다. 따라서, 본 연구에서는 호스트 기반의 침입 탐지 시스템에 관한 연구를 수행했다. 호스트 기반의 침입 탐지 시스템 모델의 성능을 평가하고 개선하기 위해서 2018년에 공개된 호스트 기반 LID-DS(Leipzig Intrusion Detection-Data Set)를 사용했다. 해당 데이터 세트를 통한 모델의 성능 평가에 있어서 각 데이터에 대한 유사성을 확인하여 정상 데이터인지 비정상 데이터인지 식별하기 위해 1차원 벡터 데이터를 3차원 이미지 데이터로 변환하여 재구성했다. 또한, 딥러닝 모델은 새로운 사이버 공격 방법이 발견될 때마다 학습을 다시 해야 한다는 단점이 있다. 즉, 데이터의 양이 많을수록 학습하는 시간이 오래 걸리기 때문에 효율적이지 못하다. 이를 해결하기 위해 본 논문에서는 적은 양의 데이터를 학습하여 우수한 성능을 보이는 Few-Shot Learning 기법을 사용하기 위해 Siamese-CNN(Siamese Convolutional Neural Network)을 제안한다. Siamese-CNN은 이미지로 변환한 각 사이버 공격의 샘플에 대한 유사성 점수에 의해 같은 유형의 공격인지 아닌지 판단한다. 정확성은 Few-Shot Learning 기법을 사용하여 정확성을 계산했으며, Siamese-CNN의 성능을 확인하기 위해 Vanilla-CNN(Vanilla Convolutional Neural Network)과 Siamese-CNN의 성능을 비교했다. Accuracy, Precision, Recall 및 F1-Score 지표를 측정한 결과, Vanilla-CNN 모델보다 본 연구에서 제안한 Siamese-CNN 모델의 Recall이 약 6% 증가한 것을 확인했다.

가변 참조 구간에서의 적응적 임계값 설정 방법을 이용한 장면 전환 검출 기술과 PMP에서의 구현 (Shot Change Detection Technique Using Adaptive Threshold Setting Method on Variable Reference Block and Implementation on PMP)

  • 김원희;문광석;김종남
    • 한국멀티미디어학회논문지
    • /
    • 제12권3호
    • /
    • pp.354-361
    • /
    • 2009
  • 장면 전환 검출은 비디오 분할의 주요 기술로서 하드웨어에서 구현하기 위해서는 실시간 및 자동적 처리가 만족되어야 한다. 현재까지 PMP나 핸드폰 같은 낮은 하드웨어 성능의 단말기에서 실시간으로 적용 가능한 장면 전환 검출 기술은 거의 없다. 이와 같은 단말기들에서 장면 전환 검출의 실시간 적용을 위하여, 본 논문에서는 가변 참조 구간의 적응적 임계값 설정 방법을 이용한 장면 전환 검출 기술을 제안한다. 제안하는 방법은 현재 프레임의 특징값과 가변 참조 구간의 평균 특징값을 비교하여 장면 전환 유무를 결정한다. 제안하는 방법은 프레임의 특징값에 독립적으로 사용할 수 있으며, 가변 참조 구간 동안의 평균 특징값을 이용하여 자동적인 임계값 설정이 가능하다. 동일한 영상에 대한 실험을 통하여 기존의 방법들보다 최고 정확도(precision)에서 0.146, 회수도(recall)에서 0.083, F1에서 0.089 이상 결과가 향상된 것을 확인하였다. 제안한 실시간 SCD 모델을 H사의 PMP에 적용하여 실시간 장면 전환 검출이 가능한 것을 검증하였다. 제안한 방법은 PMP나 핸드폰 같은 휴대용 미디어 재생 장치에서 비디오 데이터를 검색할 때 유용하게 사용될 수 있다.

  • PDF

스마트폰 기반 통행 행태 조사 자료 신뢰성 검증: 서울에서 수집된 자료를 바탕으로 (Testing the Reliability of a Smartphone-Based Travel Survey: An Experiment in Seoul)

  • 이제승;;;김대희;강준희
    • 한국ITS학회 논문지
    • /
    • 제15권2호
    • /
    • pp.50-62
    • /
    • 2016
  • 현재 스마트폰은 GPS와 가속도계를 비롯한 센서를 이용하여 인간 행동 자료를 인간의 행동을 간섭하지 않으며 비용을 절감해서 수집할 가능성을 열어주고 있다. 본 연구는 스마트폰 기반 설문 조사의 정확성과 신뢰성을 평가하였다. 스마트폰을 이용하여 수집한 자료와 가구통행실태조사를 기본으로 구성된 전통적인 종이 설문을 이용한 자료를 비교하였다. 46명의 학생이 스마트폰을 이용하여 7일간 통행 기록을 수집하였고, 같은 기간 동안 종이 설문을 수행하였다. 참여자들은 웹페이지를 통해 스마트폰으로 수집된 자신의 통행 기록을 검증하였다. 검증된 스마트폰 자료는 같은 날에 수집된 종이 설문자료와 매칭되었다. 스마트폰 기반 자료는 종이 설문자료보다 짧은 통행을 기록하는 데 효과적이었다. 통행 자료의 통행시간이 종이 자료의 통행시간보다 짧은 경향이 나타났다. 이는 기존의 종이 설문 참여자가 통행시간을 과대평가하는 경향이 있음을 시사한다. 본 연구 결과는 스마트폰 기반의 통행 자료 수집 시스템을 발전시키는 데 이바지할 것이다.

효율적인 양식 모니터링을 향하여: YOLOv7 및 SORT를 사용한 실시간 물고기 감지 및 추적을 위한 지상 기반 카메라 구현 (Towards Efficient Aquaculture Monitoring: Ground-Based Camera Implementation for Real-Time Fish Detection and Tracking with YOLOv7 and SORT)

  • 노태경;하상현;김기환;강영진;정석찬
    • 한국빅데이터학회지
    • /
    • 제8권2호
    • /
    • pp.73-82
    • /
    • 2023
  • 현재 수산업 종사자의 78%를 차지하고 있는 인력 고령화에 따른 노동력 부족 문제를 해결하기 위해 객체 검출 및 추적 알고리즘을 주요 내용으로 하는 스마트 양식 기술에 대한 연구가 활발히 진행되고 있다. 이러한 기술들은 어류의 크기 분석, 행동 패턴 예측 등의 작업이 가능하여 실시간 모니터링 및 자동화 시스템의 구축이 용이할 것으로 기대된다. 본 연구에서는 양식 시설 외부에 설치된 카메라로부터 수집된 영상 데이터를 기반으로 어류 검출 및 추적 알고리즘을 활용하였다. 수중 조건, 암모니아, pH 농도에 따른 카메라 부식 문제로 인한 높은 유지보수 비용 문제를 극복하는 것을 목표로 하였다. 어류 객체 검출을 위해 YOLOv7 모델을 활용한 실시간 모니터링 시스템의 성능을 분석하였고, 어류의 움직임을 추적하기 위해 SORT 알고리즘을 활용하였다. YOLOv7 훈련 결과 PR Curve 기반의 Recall과 Precision 값의 상충 관계를 밝혀내 조명에 의한 물줄기와 그림자의 오검출을 최소화하였음을 알 수 있다. 어류 추적을 위해 우리는 재식별화를 통해 효과적인 추적을 확인하였다. 이러한 연구 결과는 스마트 양식 산업의 운영 효율성을 높이고 양식 시설의 어류 관리 개선을 용이하게 할 것으로 기대된다.