• Title/Summary/Keyword: Rebars

Search Result 301, Processing Time 0.03 seconds

Stress Distribution Characteristics of Surrounding Reinforcing Bars due to Reinforcing Bar Cutting in Penetration (관통부의 철근 절단으로 인한 주변 철근의 응력분포 특성)

  • Chung, Chul-Hun;Moon, Il Hwan;Lee, Jungwhee;Song, Jae Cheol
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.775-786
    • /
    • 2022
  • In the plant structures including nuclear power plants, penetrations are frequently installed in walls and slabs to reinforce facilities during operation, and reinforcing bars are sometimes cut off during concrete coring. Since these penetrations are not considered at the design or construction stage, cutting of reinforcing bar during opening installation is actually damage to the structure, structural integrity evaluation considering the stress transition range or effective width around the new penetration is necessary. In this study, various nonlinear analyses and static loading experiments are performed to evaluate the effect of reinforcing bar cutting that occurs when a penetration is newly installed in the shear wall of wall-type building of operating nuclear power plant. In addition, the decrease in wall stiffness due to the installed new penetration and cutting of reinforcing bars is evaluated and the stress and strain distributions of rebars around penetration are also measured.

Prediction of the shear capacity of reinforced concrete slender beams without stirrups by applying artificial intelligence algorithms in a big database of beams generated by 3D nonlinear finite element analysis

  • Markou, George;Bakas, Nikolaos P.
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.533-547
    • /
    • 2021
  • Calculating the shear capacity of slender reinforced concrete beams without shear reinforcement was the subject of numerous studies, where the eternal problem of developing a single relationship that will be able to predict the expected shear capacity is still present. Using experimental results to extrapolate formulae was so far the main approach for solving this problem, whereas in the last two decades different research studies attempted to use artificial intelligence algorithms and available data sets of experimentally tested beams to develop new models that would demonstrate improved prediction capabilities. Given the limited number of available experimental databases, these studies were numerically restrained, unable to holistically address this problem. In this manuscript, a new approach is proposed where a numerically generated database is used to train machine-learning algorithms and develop an improved model for predicting the shear capacity of slender concrete beams reinforced only with longitudinal rebars. Finally, the proposed predictive model was validated through the use of an available ACI database that was developed by using experimental results on physical reinforced concrete beam specimens without shear and compressive reinforcement. For the first time, a numerically generated database was used to train a model for computing the shear capacity of slender concrete beams without stirrups and was found to have improved predictive abilities compared to the corresponding ACI equations. According to the analysis performed in this research work, it is deemed necessary to further enrich the current numerically generated database with additional data to further improve the dataset used for training and extrapolation. Finally, future research work foresees the study of beams with stirrups and deep beams for the development of improved predictive models.

The Experimental Study of Full-scale Centrifugal Formed High Strength Concrete Prismatic Beam(CFPB) Composited with Deck Slab (상부 슬래브와 합성된 원심성형으로 제작된 초고강도 각형보의 실험연구 )

  • Doo-Sung Lee;Sung-Jin Kim;Jeong-Hoi Kim
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.27 no.1
    • /
    • pp.19-29
    • /
    • 2023
  • An ultra-high strength prestressed prismatic beam of 100 MPa in compressive strength was developed by increasing the watertightness of concrete by utilizing centrifugal molding processes without adding expensive admixtures such as silica fume. The ultra-high strength centrifugal shaped square beam installed on the wall is composited with the upper slab concrete and then subjected to a service load. Horizontal shear stress is generated by bending between the centrifugal molding beam and the floor plate, which causes the beam and floor plate to perform composite behavior through shear connections such as studs and rebars. In this study, a flexural load test was performed on a mock-up specimen that was synthesized by fabricating an RC slab on top of a 100 MPa-class centrifugal shaped beam produced at the factory. proven reliability.

Deep learning-based post-disaster building inspection with channel-wise attention and semi-supervised learning

  • Wen Tang;Tarutal Ghosh Mondal;Rih-Teng Wu;Abhishek Subedi;Mohammad R. Jahanshahi
    • Smart Structures and Systems
    • /
    • v.31 no.4
    • /
    • pp.365-381
    • /
    • 2023
  • The existing vision-based techniques for inspection and condition assessment of civil infrastructure are mostly manual and consequently time-consuming, expensive, subjective, and risky. As a viable alternative, researchers in the past resorted to deep learning-based autonomous damage detection algorithms for expedited post-disaster reconnaissance of structures. Although a number of automatic damage detection algorithms have been proposed, the scarcity of labeled training data remains a major concern. To address this issue, this study proposed a semi-supervised learning (SSL) framework based on consistency regularization and cross-supervision. Image data from post-earthquake reconnaissance, that contains cracks, spalling, and exposed rebars are used to evaluate the proposed solution. Experiments are carried out under different data partition protocols, and it is shown that the proposed SSL method can make use of unlabeled images to enhance the segmentation performance when limited amount of ground truth labels are provided. This study also proposes DeepLab-AASPP and modified versions of U-Net++ based on channel-wise attention mechanism to better segment the components and damage areas from images of reinforced concrete buildings. The channel-wise attention mechanism can effectively improve the performance of the network by dynamically scaling the feature maps so that the networks can focus on more informative feature maps in the concatenation layer. The proposed DeepLab-AASPP achieves the best performance on component segmentation and damage state segmentation tasks with mIoU scores of 0.9850 and 0.7032, respectively. For crack, spalling, and rebar segmentation tasks, modified U-Net++ obtains the best performance with Igou scores (excluding the background pixels) of 0.5449, 0.9375, and 0.5018, respectively. The proposed architectures win the second place in IC-SHM2021 competition in all five tasks of Project 2.

Measuring Rebar Position Error and Marking Work for Automated Layout Robot Using LiDAR Sensor (마킹 로봇의 자동화를 위한 LiDAR 센서 기반 철근배근 오차 측정 및 먹매김 수행 프로세스 연구)

  • Kim, Taehoon;Lim, Hyunsu;Cho, Kyuman
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.2
    • /
    • pp.209-220
    • /
    • 2023
  • Ensuring accuracy within tolerance is crucial for a marking robot; however, rebar displacement frequently occurs during the structural work process, necessitating corrections to layout lines or rebar locations. To guarantee precision and automation, the marking robot must be capable of measuring rebar error and determining appropriate adjustments for marking lines and rebar placement. Consequently, this study proposes a method for measuring rebar location error using a LiDAR sensor and implementing a layout assessment process based on the measurement results. The rebar recognition experiment using the LiDAR sensor yielded an average error of 5mm, demonstrating a reliable level of accuracy for wall rebars. Additionally, this research proposed a process that enables the robot to evaluate rebar and marking corrections based on the error range. The findings of this study can contribute to the automated operation of marking robots while accounting for construction errors, potentially leading to improvements in structural quality.

Pull-out Resistance Capacity Evaluation of Perfobond Rib Shear Connector (유공강판 전단연결재의 인발저항성능 평가)

  • Kim, Young-Ho;Koo, Hyun-Bon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.6A
    • /
    • pp.853-859
    • /
    • 2008
  • As a new system of steel pipe pile cap reinforcement, the application of perforated flat bar bolted to the steel pipe pile head was suggested for the improvement of structural performance of footing structure. This study investigates the structural characteristics of perforated flat bar shear connectors according to shape and diameter of hole, number of rebars passing through the hole and the depth of settlement. The result shows several requirements to ensure sufficient pull-out resistance and ductility such as that the hole diameter excluding diameter of rebar should exceed the size of aggregates; the hole should be perforated with diameter as the half of plate height; and the adequate depth of settlement should be ensured for the optimal performance.

Experimental Study on Behaviors of Pile-Abutment Joint in Integral Abutment Bridge (일체식 교대 교량의 파일-교대 연결부 거동에 관한 실험적 연구)

  • Kim, Sang-Hyo;Yoon, Ji-Hyun;Ahn, Jin-Hee;Lee, Sang-Woo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.6A
    • /
    • pp.651-659
    • /
    • 2009
  • This study dealt with the behavior of pile-abutment joints in integral abutment bridges. Two types of pile-abutment joints were proposed to strengthen its rigid action. One was fabricated with transverse rebars which penetrated the H-pile in the abutment. The other was composed of stud shear connectors on the flanges of the H-pile. Three half scaled pile-abutment joint specimens were fabricated and loading tests were performed to evaluate the behavior of proposed joints. The results showed that the initial stiffness in elastic region of all specimens was sufficient to be applied for the integral abutment bridges. However, the performances of the proposed joints were shown to be more effective in rigid action compared to the joints types suggested by the Integral Bridge Design Guideline. The results from stiffness, strength, rotation and crack propagation tests supported this matter.

Advanced electromagnetic wave-based method for characterizing defects in cement-based structures using time domain reflectometry

  • Dongsoo Lee;Jong-Sub Lee;Young K. Ju;Yong-Hoon Byun
    • Computers and Concrete
    • /
    • v.33 no.5
    • /
    • pp.621-630
    • /
    • 2024
  • This study presents novel electromagnetic wave-based methods for evaluating the integrity of cement-based structures using time domain reflectometry (TDR). Two cement-based plates with embedded rebars are prepared under sound and defective conditions. TDR tests are carried out using transmission lines with various numbers of artificial joints, and electromagnetic waves are measured to assess the integrity of the plates. The experimental results show that the travel time of electromagnetic waves is consistently longer in sound plates than in defective ones, and an increase in the reflection coefficients is observed in the defect zone of the defective plates. Electromagnetic wave velocities are higher in the defective plates, especially when connectors are present in the transmission line. A novel approach based on the area of the reflection coefficient provides larger areas in the defective plates, and the attenuation effect of the electromagnetic waves induces a difference in the areas of the reflection coefficient between the two defect conditions. An alternative method using the centroid of the defect zone slightly overestimates the location of the defect zone. The length of the defect zone is estimated using the defect ratio and wave velocities of cement, air, and plate. The length of the defect zone can also be calculated using the travel times within the plate, total measured length of the plate, and wave velocities in the cement and air. Therefore, the electromagnetic wave-based methods proposed in this study may be useful for estimating the location and length of defect zones by considering attenuation effects.

Corrosion Resistance of Cr-bearing Rebar in Concrete Subjected to Carbonation and Chloride Attack (중성화와 염해의 복합 열화 환경하의 콘크리트 내에서의 Cr강방식철근의 방식성)

  • Tae, Sung-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.3
    • /
    • pp.115-122
    • /
    • 2006
  • Ten types of steel bars having different Cr contents were embedded in concretes with chloride ion contents of 0.3, 0.6, 1.2, and $2.4kg/m^3$ to fabricate specimens assuming such deteriorative environments. After being carbonated to the reinforcement level, these concretes were subjected to corrosion-accelerating cycles of heating/cooling and drying/wetting. The time-related changes in the corrosion area and corrosion loss of the Cr-bearing rebars were then measured to investigate their corrosion resistance. The results revealed that in a deteriorative environment prone to both carbonation and chloride attack, corrosion resistance was evident with a Cr content of 7% or more and 9% or more in concretes with chloride ion contents of 1.2 and $2.4kg/m^3$, respectively.

Development of Steel Pipe Splice Sleeve for High Strength Reinforcing Bar(SD500) and Estimation of its Structural Performance under Monotonic Loading (SD500 고강도 철근용 강관 스플라이스 슬리브 철근이음 개발 및 구조성능 평가)

  • Lee, Sang-Ho;Kim, Hyong-Kee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.6
    • /
    • pp.169-180
    • /
    • 2007
  • Among several splicing system of reinforcing bar, the grout-filled splice sleeve system has been applied widely. However, as the splice sleeve for high strength rebar as SD500 is not yet made in korea, the development of splice sleeve for high strength reinforcing bar are required as soon as possible. It is the purpose of this study to develop the steel pipe sleeve for high strength rebar as SD500 and estimate its structural performance by monotonic loading test. The experimental variables adopted in this study are the development length of rebars, types of sleeve etc. The results of this study showed that the developed steel pipe splice sleeve system for high strength reinforcing bar as SD500 retained the structural performance required in domestic, ACI and AIJ criteria. And it is considered that the study result presented in this paper can be helpful in developing reasonable design method of steel pipe splice sleeve system for high strength reinforcing bar as SD500.