• Title/Summary/Keyword: Rebar-list

Search Result 3, Processing Time 0.017 seconds

A Study on the Actual Condition Analysis and Improvement of Rebar Work in Korean Building Construction (국내 철근공사 실태분석 및 개선방안에 관한 연구)

  • Park, U-Yeol;Kim, Gwang-Hui;Gang, Gyeong-In
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.3
    • /
    • pp.83-91
    • /
    • 2004
  • With labor shortage and high-wage era, the construction cost is rising and the construction business is dull, demanding the construction environment of Korea to raise profitability through major cost savings and rationalization of construction management. However, although reinforcing bar(rebar) work, which greatly effects the building's safety, endurance, and construction time, is an important phase in construction, it holds serious problem of quality and productivity deterioration due to its characteristic of intensive-labor and maintaining of old work methods resulting in poor management, and costs increase. Therefor in this study to investigate current situation and problems of rebar work and to find methods of betterment, a survey was conducted to site engineers and individuals in division of cost estimate of domestic construction company. The survey questions were on the subjects of (1) calculating rebar quantity, (2) ordering and procurement, (3) rebar cutting and bending, and (4) rebar work management. Method of improvement was sought by analyzing the results of the survey

Automatic Algorithms of Rebar Quantity Take-Off of Green Frame by Composite Precast Concrete Members (합성 PC부재에 의한 그린 프레임의 철근물량 산출 자동화 알고리즘)

  • Lee, Sung-Ho;Kim, Seon-Hyung;Lee, Goon-Jae;Kim, Sun-Kuk;Joo, Jin-Kyu
    • Korean Journal of Construction Engineering and Management
    • /
    • v.13 no.1
    • /
    • pp.118-128
    • /
    • 2012
  • As the bearing wall structure, which has been widely applied to domestic apartment buildings since the 1980s, cause many problems during remodeling of buildings, the government encourages constructors to adopt flat plate or rahmen structure through legal incentives. In line with such a trend, the green frame, an eco-friendly rahmen structure that has removed the shortcomings of previous structures, was developed to enhance structural safety, constructability, and eco-friendliness. The construction of green frame can reduce the labor cost and facilitate the composition of iron bars to reduce rebar loss through calculating the quality and establishing the bar bending schedule automatically on the precast concrete member data collected over the design phase. Therefore, the purpose of this study is to develop the algorithm to automate the calculation of iron bar volume for the green frame designed on composite precast concrete members. Automated algorithm to calculate concrete structural design information and design information. Practices through the application site should prove efficacy. The database established by the developed algorithm will automate the establishment of iron bar processing map and bar cutting list and the calculation of optimal composition and order volume to minimize the rebar loss. This will also reduce the expenses on management staff and overall construction cost through the minimization of rebar loss.

A Framework for the Computer-aided Shop Drawing (철근 배근시공도 설계 자동화 프레임워크)

  • Maeng, Seung-Ryol;Gong, Heon-Taek
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.12
    • /
    • pp.556-565
    • /
    • 2009
  • In this paper, we propose a CAD software framework to automatically generate a shop drawing. Shop drawing is to draw the geometric figures representing an arrangement of steel bars for a concrete building on its structural design, based on its construction specifications and the design rules, and its well-formed process lead to be automated. A key point of the design automation is to minimize the user interactions by automatically recognizing the design specifications and to finally generate the shape of the geometric figures. The graphic pipeline of the proposed framework consists of four stages; a specification DB, specification extraction, binding, and rendering. To effectively extract all specifications only for a figure from the DB and bind them to its shape, we use a hierarchical approach; the specifications are classified into three common, structural, and figure classes, and each attribute is extracted in design phases. Based on our framework, we implemented a specialized CAD for shop drawing using AutoCAD and could easily update it according to user's demands.