• 제목/요약/키워드: Rebar corrosion

검색결과 242건 처리시간 0.021초

Corrosion effects on tension stiffening behavior of reinforced concrete

  • Shayanfar, M.A.;Ghalehnovi, M.;Safiey, A.
    • Computers and Concrete
    • /
    • 제4권5호
    • /
    • pp.403-424
    • /
    • 2007
  • The investigation of corrosion effects on the tensile behavior of reinforced concrete (RC) members is very important in region prone to high corrosion conditions. In this article, an experimental study concerning corrosion effects on tensile behavior of RC members is presented. For this purpose, a comprehensive experimental program including 58 cylindrical reinforced concrete specimens under various levels of corrosion is conducted. Some of the specimens (44) are located in large tub containing water and salt (5% salt solution); an electrical supplier has been utilized for the accelerated corrosion program. Afterwards, the tensile behavior of the specimens was studied by means of the direct tension tests. For each specimen, the tension stiffening curve is plotted, and their behavior at various load levels is investigated. Average crack spacing, loss of cross-section area due to corrosion, the concrete contribution to the tensile response for different strain levels, and maximum bond stress developed at each corrosion level are studied, and their appropriate relationships are proposed. The main parameters considered in this investigation are: degree of corrosion ($C_w$), reinforcement diameter (d), reinforcement ratio (${\rho}$), clear concrete cover (c), ratio of clear concrete cover to rebar diameter (c/d), and ratio of rebar diameter to reinforcement percentage ($d/{\rho}$).

건습반복 부식촉진시험 및 장기폭로시험의 상관성에 대한 연구 (A Study on Correlation Between Cyclic Drying-Wetting Accelerated Corrosion Test and Long-term Exposure Test)

  • 박상순
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제20권4호
    • /
    • pp.136-143
    • /
    • 2016
  • 염해에 의한 철근콘크리트 구조물의 내구수명을 평가하는 방법에는 여러 가지가 있지만, 가장 확실한 방법은 염해환경에 노출된 시편에 대한 철근 부식시험을 시행하는 것이다. 그러나 이러한 방법은 장기간이 소요된다는 단점이 있으며 이를 보완한 촉진부식시험 결과는 장기시험과의 상관성이 규명되지 않아 적용에 한계가 따른다. 따라서 본 연구에서는 부식촉진시험과 장기폭로시험간의 상관성을 분석하는 것을 연구의 목표로 한다. 부식속도가 가장 빠른 간만대 환경을 모사한 최적 건습반복시험방법을 찾고 해양환경폭로시험장의 간만대에 장기간 노출된 시편의 철근부식모니터링 시험결과와의 비교를 통해 촉진부식시험과 장기폭로시험간의 상관계수를 도출하였다. 또한 재료의 배합별 특성을 파악하기 위해 물,결합재비 60%를 기준으로 플라이애시를 20% 치환한 배합과 고로슬래그 미분말을 30% 치환한 배합을 비교하였으며, 물-결합재비가 35%인 고강도 배합에 대해서도 시험을 실시하였다. 반전지전위법에 의한 부식 모니터링 결과 일정기간의 건조와 습윤의 반복 조건보다는 염수를 시편 상부에 침지시켜 염수 및 산소의 공급이 계속되는 염수 ponding 시험법이 24~36% 정도 부식을 촉진시키는 것으로 나타났다. 각 배합별로는 모든 시험법에서 OPC60, FA, BS, OPC35 순으로 부식이 발생하였다. 간만대의 장기폭로시험과의 상관성 분석 결과 건습반복 부식촉진시험의 경우 4.23~5.52의 상관계수를 가지고 있었으며, 염수 ponding 시험법의 경우 6.54~7.82의 상관계수를 나타내었다.

염화칼슘이 함유된 제설제로 인한 콘크리트 바닥판 단부의 염해에 관한 사례 연구 (A Case Study on Chloride Corrosion for the End Zone of Concrete Deck Subjected to De-icing Salts Added Calcium Chloride)

  • 정지승;김보헌;김일순
    • 한국안전학회지
    • /
    • 제29권6호
    • /
    • pp.87-93
    • /
    • 2014
  • In this study, the reinforced concrete rahmen bridge damaged by the chloride attack was investigated. According to the investigation, the degraded concretes on cantilever kerb and end part were intensively observed. Thus, the chloride content test and half-cell method were performed to evaluate the degraded parts. As a result, the contents of chloride on degraded parts were C and D grade. On the other hand, the half-cell potential values of rebar in degraded concrete were measured with the minor corrosion. This rebar corrosion is expected to progressing. Chloride content D grade is due to expansion pressure by corrosion of rebar and freeze-thaw by permeate water, could see progresses rapidly degradation. In order to prevent chloride attack to concrete deck caused by deicing salts, corresponding to the chloride critical concentration must maintain grade b or at least grade c. Chloride condition evaluation standard apply to evaluation of marine structure chloride attack with chloride attack by deicing salts.

Application of fractals to study the corroded reinforced concrete beam

  • Fan, Y.F.;Zhou, J.;Hu, Z.Q.
    • Structural Engineering and Mechanics
    • /
    • 제20권3호
    • /
    • pp.265-277
    • /
    • 2005
  • This paper is focused on fractal analysis of the surface cracking, a new tool for safety evaluation of corroded reinforced concrete (RC) beams. Comprehensive experimental investigations, including flexural tests, coupon tests on strength evaluation of corroded concrete and rusty rebar, and pullout tests to determine bond strength between concrete and rebar were carried out on nine Corroded Reinforced Concrete Beams (CRCB) exposed to an aggressive environment for more than 10 years. In combination with test results from a previous study on CRCBs fabricated in the laboratory from accelerated methods, it is found that, for both types of beams, the surface cracking distributions are fractal in character at loading and failure stages. Fractal dimension is calculated for all specimens at different corrosion states based on fractal analysis method. Relationships between the fractal dimension and mechanical properties of corroded concrete, rebar corrosion ratio, and ductility of CRCBs are discussed in detail. It is concluded that the fractal dimension can act as a damage index and can be efficiently used to describe the corrosion state of CRCBs.

A multiscale numerical simulation approach for chloride diffusion and rebar corrosion with compensation model

  • Tu, Xi;Li, Zhengliang;Chen, Airong;Pan, Zichao
    • Computers and Concrete
    • /
    • 제21권4호
    • /
    • pp.471-484
    • /
    • 2018
  • Refined analysis depicting mass transportation and physicochemical reaction and reasonable computing load with acceptable DOFs are the two major challenges of numerical simulation for concrete durability. Mesoscopic numerical simulation for chloride diffusion considering binder, aggregate and interfacial transition zone is unable to be expended to the full structure due to huge number of DOFs. In this paper, a multiscale approach of combining both mesoscopic model including full-graded aggregate and equivalent macroscopic model was introduced. An equivalent conversion of chloride content at the Interfacial Transition Layer (ITL) connecting both models was considered. Feasibility and relative error were discussed by analytical deduction and numerical simulation. Case study clearly showed that larger analysis model in multiscale model expanded the diffusion space of chloride ion and decreased chloride content in front of rebar. Difference for single-scale simulation and multiscale approach was observed. Finally, this paper addressed some worth-noting conclusions about the chloride distribution and rebar corrosion regarding the configuration of rebar placement, rebar diameter, concrete cover and exposure period.

콘크리트 중의 철근방식을 위한 방청제의 적용 (Application of Corrosion Inhibitors to Protect the Corrosion of Reinforcement in Concrete)

  • 문한영;김성수;김홍삼;안기용
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1999년도 학회창립 10주년 기념 1999년도 가을 학술발표회 논문집
    • /
    • pp.751-754
    • /
    • 1999
  • Corrosion inhibitors are widely used to protect chloride-induced corrosion of reinforcement in concrete. However, the number of researches on the corrosion of reinforcement, when corrosion inhibitor is used, is not enough for actual application in the field. In addition, on corrosion of reinforcement a quantitative standard about corrosion inhibitor does not exist and the data about its influencing concrete are relatively rare. In this study, the effectiveness of rebar corrosion protection, setting time, compressive strength, chloride ion's penetration, and diffusion test were performed using with three different kinds of corrosion inhibitors.

  • PDF

Evaluation of Bond Properties of Reinforced Concrete with Corroded Reinforcement by Uniaxial Tension Testing

  • Kim, Hyung-Rae;Choi, Won-Chang;Yoon, Sang-Chun;Noguchi, Takafumi
    • International Journal of Concrete Structures and Materials
    • /
    • 제10권sup3호
    • /
    • pp.43-52
    • /
    • 2016
  • The degradation of the load-bearing capacity of reinforced concrete beams due to corrosion has a profoundly negative impact on the structural safety and integrity of a structure. The literature is limited with regard to models of bond characteristics that relate to the reinforcement corrosion percentage. In this study, uniaxial tensile tests were conducted on specimens with irregular corrosion of their reinforced concrete. The development of cracks in the corroded area was found to be dependent on the level of corrosion, and transverse cracks developed due to tensile loading. Based on this crack development, the average stress versus deformation in the rebar and concrete could be determined experimentally and numerically. The results, determined via finite element analysis, were calibrated using the experimental results. In addition, bond elements for reinforced concrete with corrosion are proposed in this paper along with a relationship between the shear stiffness and corrosion level of rebar.

Corrosion behaviors of cement mortar specimens with different cover thickness in natural sea water

  • Jeong, Jin-A;Jin, Chung-Kuk;Jeong, Eun-Seok
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제40권2호
    • /
    • pp.107-111
    • /
    • 2016
  • This paper presents electrochemical corrosion behaviors of cement mortar specimens in the high salinity condition. Chloride ion is known as the most detrimental parameter to cause the corrosion in reinforced concrete. Increasing the concrete cover thickness is one of the corrosion protection methods against chloride ion; so, this study mainly focuses on the effects of mortar cover thickness on corrosion protection. In specimens, rebar, which was a height of 200 mm and a diameter of 10 mm, was installed at the center of the small size form. Later on, mortar was injected into the form, and 10, 20, 30, 40, and 50 mm of the different mortar cover thicknesses were selected. Potential measurements, linear polarization resistance tests, and cyclic potentiodynamic polarization tests were performed for specimens that were exposed to seawater. These results were compared with visual inspection results of rebar. The results show that an increase in the cover thickness contributes to corrosion protection. In addition, the result of electrochemical corrosion tests generally agreed with that of an autopsy visual inspection.

전기화학적 임피던스법을 이용한 염함유 시멘트 모르터내의 철근부식 연구 (Electrochemical Impedance Study on the Rebar Corrosion in Cement Mortar Containing Chloride Ions)

  • 남상철;백지흠;조원일;조병원;윤경석;전해수
    • 공업화학
    • /
    • 제9권6호
    • /
    • pp.811-816
    • /
    • 1998
  • 염분을 함유한 시멘트 모르터 내의 철근의 부식현상을 교류 임피던스법에 의해 고찰하였다. 부식 가속화 장치를 이용하여 단기간 내에 부식현상을 예측하였으며, 측정된 임피던스 값은 제안된 전기화학적 등가회로 및 모델에 적용할 수 있었으며, CNLS(complex nonlinear least squares) fitting법에 의하여 계산된 값과 실험에서 얻은 값이 잘 일치함을 알 수 있었다. 주어진 모델로부터 구한 전하이동저항 (charge transfer resistance, $R_2$)은 염분 농도와 시간에 따른 철근의 무게 감소량의 예측을 가능하게 하였으며, 이는 실제 철근의 무게 감소치에 근접함을 알 수 있었다.

  • PDF

다중벽 탄소나노튜브를 이용한 철근 부식 검출 센서 제작 연구 (A study on the Corrosion Detection Sensor using Multi-Wall Carbon Nanotube)

  • 박수빈;김성연;이수정;최문정;홍영준;권성준;유봉영;윤상화
    • 한국표면공학회지
    • /
    • 제54권4호
    • /
    • pp.194-199
    • /
    • 2021
  • In this study, rebar corrosion detection sensor was fabricated using multi-walled carbon nanotubes (MWCNTs). MWCNTs were pre-treated in the acid electrolytes to attach the carboxylic acid to the surface of MWCNTs. The fabricated sensor was attached on the surface of rebar and it detected the corrosion of steel using LCR meter with variation of capacitance. The surface morphology and electrical properties were characterized using scanning electron microscope (SEM) and electrical test equipment, respectively. To verify the corrosion detection characteristics, comparison experiment using plastic bar was performed. Moreover, mechanism of corrosion detection sensor was discussed.