Artificial Intelligence(AI) is that branch of computer science that deals with designing computer system that exhibit some of the characteristics associated with intelligence on human behaviors such as, understanding natural language, reasoning, solving problems, robotics and so on. The most developed component of artificial intelligence today is probably the expert system. An expert system is defined as a computer program that embodies organized knowledge concerning some specific domain of human expertise and programmed to perform convincingly as an advisory consultant in the given domain with self-explanation of reasoning on demand. This paper describes general concept of artificial intelligence and expert system and investigates applicability of expert system to ship design.
최근 스마트 디바이스가 많이 보급되면서 개인 영상 미디어가 다양한 방식으로 생성되어 영상 미디어를 이용한 서비스가 요구되고 있다. 이에 따라 영상 미디어 분석 및 인지 기술에 대한 연구가 활발히 진행되어, 영상으로부터 의미 있는 객체를 인지할 수 있게 되었다. 기존의 미디어 온톨로지를 이용한 시스템은 영상의 제목, 태그 및 스크립터 정보를 이용하기 때문에 영상에 등장하는 객체를 통해 미디어 분류를 수행할 수 없는 단점이 있다. 따라서 본 논문에서는 영상 미디어 데이터에서 인지되는 객체들을 이용해 해당 영상이 속하는 범주로 자동 분류하기 위해 서술논리 기반(Description Logic) 추론 시스템과 순서에 따라 달라질 수 있는 이벤트 처리를 위한 규칙 기반 추론 시스템을 제안한다. 제안하는 서술논리 기반 추론 시스템은 영상 미디어에서 인지되는 객체들의 관계를 서술논리로 정의된 행위(Activity) 온톨로지로 표현하고, 실체화 추론을 통해 인지된 객체가 행위로 추론되는 방법에 대해 설명한다. 규칙 기반 추론 시스템은 추론된 행위의 순서에 따른 이벤트를 정의하고 순서 기반 규칙 추론을 이용하여 범주에 알맞은 이벤트로 자동 분류하는 방법에 대하여 설명한다. 제안하는 방법의 타당성을 증명하기 위해 유투브의 영상에 대한 분석을 통해 올바른 범주로 분류된 미디어 데이터를 구성하여 제안하는 시스템의 타당성을 증명하였다.
지식정보 사회로의 변화는 교육 패러다임의 변화를 요구하고, 이에 따라 지능형 학습과 원격 교육은 지속적인 연구 주제로서 관심을 모으고 있다. 이러한 연구 분야에서의 교수 학습 방법은 학습의 개별성, 즉, 개별 학습자의 특성에 의존하는 학습 요소 및 경로의 추출을 전제로 하며, 이는 '개별화된 추론 전략'에 대한 논의로 이어진다. 따라서 본 연구에서는 신경논리망의 확장 개념인 X-Neuronet(eXtended Neuronet)을 근거로, 학습 내용을 위계적 표상과 자체의 자기 학습(self-learning)이 가능한 학습자 인지구조체로 표현하고, 이 구조체를 이용하여 개별 학습자의 지식상태에 의존하는 추론의 개별화 전략을 설계하고, 이에 대한 타당성을 검증하였다.
Case-based reasoning (CBR) is a reasoning technique that reuses past cases to find a solution to the new problem. It often shows significant promise for improving effectiveness of complex and unstructured decision making. It has been applied to various problem-solving areas including manufacturing, finance and marketing for the reason. However, the design of appropriate case indexing and retrieval mechanisms to improve the performance of CBR is still a challenging issue. Most of the previous studies on CBR have focused on the similarity function or optimization of case features and their weights. According to some of the prior research, however, finding the optimal k parameter for the k-nearest neighbor (k-NN) is also crucial for improving the performance of the CBR system. In spite of the fact, there have been few attempts to optimize the number of neighbors, especially using artificial intelligence (AI) techniques. In this study, we introduce a genetic algorithm (GA) to optimize the number of neighbors to combine. This study applies the novel approach to Korean stock market. Experimental results show that the GA-optimized k-NN approach outperforms other AI techniques for stock market prediction.
One of the most visible developments in Decision Support Systems (DSS) was the emergence of rule-based expert systems. Hence, despite their success in many sectors, developers of Medical Rule-Based Systems have met several critical problems. Firstly, the rules are related to a clearly stated subject. Secondly, a rule-based system can only learn by updating of its rule-base, since it requires explicit knowledge of the used domain. Solutions to these problems have been sought through improved techniques and tools, improved development paradigms, knowledge modeling languages and ontology, as well as advanced reasoning techniques such as case-based reasoning (CBR) which is well suited to provide decision support in the healthcare setting. However, using CBR reveals some drawbacks, mainly in its interrelated tasks: the retrieval and the adaptation. For the retrieval task, a major drawback raises when several similar cases are found and consequently several solutions. Hence, a choice for the best solution must be done. To overcome these limitations, numerous useful works related to the retrieval task were conducted with simple and convenient procedures or by combining CBR with other techniques. Through this paper, we provide a combining approach using the multi-criteria analysis (MCA) to help, the traditional retrieval task of CBR, in choosing the best solution. Afterwards, we integrate this approach in a decision model to support medical decision. We present, also, some preliminary results and suggestions to extend our approach.
전자상거래가 점차 활성화됨에 따라 다양한 형태의 쇼핑몰들이 구축되고 있으나, 구매자가 상품을 구입하는데 있어 구매자 기호와 요구에 적합한 상품을 검색하기에는 미흡한 실정이다. 따라서, 본 논문에서는 CBR(Case Based Reasoning)과 RBR(Rule Based Reasoning)을 통합한 검색에이전트와 사용자 프로파일과 선호도를 관리하는 사용자 에이전트로 이루어진 멀티 에이전트를 이용하는 CARUBA 시스템을 설계하고, 검색에이전트가 사용자에이전트에서 보낸 정보를 이용하여 유사도를 산출하여 구매자의 요구에 적합한 상품을 신속하게 추천할 수 있는 방법을 제안한다
한국퍼지및지능시스템학회 1998년도 The Third Asian Fuzzy Systems Symposium
/
pp.719-724
/
1998
This paper presents a systematic developement of a formal approach to inference in approximate reasoning. We introduce some measures of similarity and discuss their properties. Using the concept of similarity index we formulate two methods for inferring from vague knowledge. In order to illustrate the effectiveness of the proposed technique we use it to develop a vowel recognition system.
The diagrammatic language for pathways is widely used for representing systems knowledge as a network of causal relations. Biologists infer and hypothesize with pathways to design experiments and verify models, and to identify potential drug targets. Although there have been many approaches to formalize pathways to simulate a system, reasoning with incomplete and high level knowledge has not been possible. We present a qualitative formalization of a pathway language with incomplete causal descriptions and its translation into propositional temporal logic to automate the reasoning process. Such automation accelerates the identification of drug targets in pathways.
Knowledge management is a recent area in business administration that deals with how to leverage knowledge as a key asset and resource in modern organizations. Also, Knowledge systems are the single most important industrial and commercial offspring of the discipline called artificial intelligence. A Case Based Reasoning(CBR) system solves new problems by recalling adapting previous solutions. This paper presents the results of a recent empirical study. Furthermore this study proposes a CBR Methodology designed to manage knowledge of Hana company under e-business.
As the effective use of information has gained greater attention over the decade, various conventional AI techniques have been applied to develop expert systems for business applications. Case-based reasoning (CBR) makes data more accessible by organizing it as a set of examples from past experience that can be generalized and applied to current problems. This paper illustrates basic concepts of CBR and addresses the system discussed in this paper can provide a basis for building more flexible and adaptable expert systems for business applications.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.