• Title/Summary/Keyword: Reasoning System

Search Result 933, Processing Time 0.029 seconds

Study on Inference and Search for Development of Diagnostic Ontology in Oriental Medicine (한의진단 Ontology 구축을 위한 추론과 탐색에 관한 연구)

  • Park, Jong-Hyun
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.23 no.4
    • /
    • pp.745-750
    • /
    • 2009
  • The goal of this study is to examine on reasoning and search for construction of diagnosis ontology as a knowledge base of diagnosis expert system in oriental medicine. Expert system is a field of artificial intelligence. It is a system to acquire information with diverse reasoning methods after putting expert's knowledge in computer systematically. A typical model of expert system consists of knowledge base and reasoning & explanatory structure offering conclusion with the knowledge. To apply ontology as knowledge base to expert system practically, consideration on reasoning and search should be together. Therefore, this study compared and examined reasoning, search with diagnosis process in oriental medicine. Reasoning is divided into Rule-based reasoning and Case-based reasoning. The former is divided into Forward chaining and Backward chaining. Because of characteristics of diagnosis, sometimes Forward chaining or backward chaining are required. Therefore, there are a lot of cases that Hybrid chaining is effective. Case-based reasoning is a method to settle a problem in the present by comparing with the past cases. Therefore, it is suitable to diagnosis fields with abundant cases. Search is sorted into Breadth-first search, Depth-first search and Best-first search, which have respectively merits and demerits. To construct diagnosis ontology to be applied to practical expert system, reasoning and search to reflect diagnosis process and characteristics should be considered.

Optimazation of Fuzzy Systems by Switching Reasoning Methods Dynamically

  • Smith, Michael H.;Takagi, Hideyuki
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.1354-1357
    • /
    • 1993
  • This paper proposes that the best reasoning(i.e. rule evaluation) method which should be used in a fuzzy system significantly depends on the reasoning environment. It is shown that allowing for dynamic switching of reasoning methods leads to better performance, even when only two different reasoning methods are considered. This paper discusses DSFS (Dynamic Switching Fuzzy System) which dynamically switches and finds the best reasoning method (from among 80 different possible reasoning methods) to use depending on the reasoning situation. To overcome the reasoning speed and memory problem of DSFS due to its computational requirements, the DSFS Switching Reasoning Table method is proposed and its higher performance as compared to a conventional fuzzy system is shown. Finally, efforts to obtain general relationships between the characteristics of different reasoning methods and the actual control surface/environment is discussed.

  • PDF

Everyday Physical Reasoning by Qualitative Reasoning (정성적 추론을 이용한 일상의 자연 현상에 대한 추론)

  • Kim, Hyeon-Kyeong
    • Korean Journal of Cognitive Science
    • /
    • v.16 no.3
    • /
    • pp.213-224
    • /
    • 2005
  • To develop a cognitive system with the flexibility and breadth of human reasoning, it's very important to construct a large scale knowledge base which includes commonsense knowledge as well as expert knowledge. This paper introduces a cognitive system which provides a commonsense reasoning for everyday physical phenomena using qualitative reasoning. It is difficult to apply previous qualitative reasoning to commonsense reasoning since it provides reasoning based on abstract concepts which are apart from everyday real world concepts. Our research provides commonsense reasoning based on sketches and real world concepts by integrating qualitative reasoning and general large scale Cyc knowledge base. Our system has been implemented and tested on various examples.

  • PDF

Development of an Intelligent Program for Diagnosis of Electrical Fire Causes (전기화재 원인진단을 위한 지능형 프로그램 개발)

  • 권동명;홍성호;김두현
    • Journal of the Korean Society of Safety
    • /
    • v.18 no.1
    • /
    • pp.50-55
    • /
    • 2003
  • This paper presents an intelligent computer system, which can easily diagnose electrical fire causes, without the help of human experts of electrical fires diagnosis. For this system, a database is built with facts and rules driven from real electrical fires, and an intellectual database system which even a beginner can diagnose fire causes has been developed, named as an Electrical Fire Causes Diagnosis System : EFCDS. The database system has adopted, as an inference engine, a mixed reasoning approach which is constituted with the rule-based reasoning and the case-based reasoning. The system for a reasoning model was implemented using Delphi 3, one of program development tools, and Paradox is used as a database building tool. To verify effectiveness and performance of this newly developed diagnosis system, several simulated fire examples were tested and the causes of fire examples were detected effectively by this system. Additional researches will be needed to decide the minimal significant level of the solution and the weighting level of important factors.

Multiple Case-based Reasoning Systems using Clustering Technique (클러스터링 기법에 의한 다중 사례기반 추론 시스템)

  • 이재식
    • Journal of Intelligence and Information Systems
    • /
    • v.6 no.1
    • /
    • pp.97-112
    • /
    • 2000
  • The basic idea of case-based reasoning is to solve a new problem using the previous problem-solving experiences. In this research we develop a case-based reasoning system for equipment malfunction diagnosis. We first divide the case base into clusters using the case-based clustering technique. Then we develop an appropriate case-based diagnostic system for each cluster. In other words for individual cluster a different case-based diagnostic system which uses different weights for attributes is developed. As a result multiple case-based reasoning system are operating to solve a diagnostic problem. In comparison to the performance of the single case-based reasoning system our system reduces the computation time by 50% and increases the accuracy by 5% point.

  • PDF

Design of Problem Solving Primitives for Efficient Evidential Reasoning

  • Lee, Gye Sung
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.49-58
    • /
    • 2019
  • Efficient evidential reasoning is an important issue in the development of advanced knowledge based systems. Efficiency is closely related to the design of problems solving methods adopted in the system. The explicit modeling of problem-solving structures is suggested for efficient and effective reasoning. It is pointed out that the problem-solving method framework is often too coarse-grained and too abstract to specify the detailed design and implementation of a reasoning system. Therefore, as a key step in developing a new reasoning scheme based on properties of the problem, the problem-solving method framework is expanded by introducing finer grained problem-solving primitives and defining an overall control structure in terms of these primitives. Once the individual components of the control structure are defined in terms of problem solving primitives, the overall control algorithm for the reasoning system can be represented in terms of a finite state diagram.

An Expert System for Foult Diagnosis in a System (전력계통의 고장진단을 위한 전문가 시스템의 연구)

  • Park, Young-Moon;Lee, Heung-Jae
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.241-245
    • /
    • 1989
  • A knowledge based expert system is a computer program that emulates the reasoning process of a human expert in a specific problem domain. This paper presents an expert system to diagnose the various faults in power system. The developed expert system is represented considering two points; the possibility of solution and the fast processing speed. As uncertainties exist in the facts and rules which comprise the knowledge base of the expert system, Certainty Factor, which is based on the confirmation theory is used for the inexact reasoning. Also, as the diagnosis problem requires the inductive reasoning process in nature, the solution is imperfect and not unique in general. So the expert system is designed to generate all the possible hypothesis in order of the possibility and also it can explain the propagation procedure of the faults for each solution using the built in backtracking mechanism. In realization of the expert system, the processing speed is greatly dependent upon the problem representation, reasoning scheme and search strategy. So, in this paper the fault diagnosis problem itself is analysed from the view point of Artificial Intelligence and as a result, the expert system has the following basic features. 1) The certainty factor is adopted in the inference engine for inexact reasoning. 2) Problem apace is represented using the problem reduction technique. 3) Bidirectional reasoning scheme is used. 4) Best first search strategy is adopted for rapid processing. The expert system was developed us ing PROLOG language.

  • PDF

A Study on the Explanation Scheme using Problem Solving Primitives

  • Lee, Gye Sung
    • International Journal of Advanced Culture Technology
    • /
    • v.7 no.3
    • /
    • pp.158-165
    • /
    • 2019
  • Knowledge based system includes tools for constructing, testing, validating and refining the system along with user interfaces. An important issue in the design of a complete knowledge based system is the ability to produce explanations. Explanations are not just a series of rules involved in reasoning track. More detailed and explicit form of explanations is required not only for reliable reasoning but also for maintainability of the knowledge based system. This requires the explanation mechanisms to extend from knowledge oriented analysis to task oriented explanations. The explicit modeling of problem solving structures is suggested for explanation generation as well as for efficient and effective reasoning. Unlike other explanation scheme such as feedback explanation, the detailed, smaller and explicit representation of problem solving constructs can provide the system with capability of quality explanation. As a key step to development for explanation scheme, the problem solving methods are broken down into a finer grained problem solving primitives. The system records all the steps with problem solving primitives and knowledge involved in the reasoning. These are used to validate the conclusion of the consultation through explanations. The system provides user interfaces and uses specific templates for generating explanation text.

Reasoning Model of the Case-Based Construction Safety Management System (사례기반 건설안전 관리시스템의 추론 모형)

  • 예태곤;이재용;이현수
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.1
    • /
    • pp.167-176
    • /
    • 1999
  • Construction accidents occur reiteratively in similar fashions. There have been several attempts to develop a safety program for preventing construction accidents on sites. It will be very effective to use previous accident cases for establishing proper safety plan and managing safety process. This research develops a case-based construction safety management system which enables construction managers or safety managers to prevent potential accidents during the construction process. The case-oriented approach is performed through the representation of previous accident cases in accordant with the similarity to the conditions of current site. It uses a case-based reasoning which is one of the reasoning methods of an expert system. A prototype system for the reasoning model was implemented using one of the case based system development tools. The system was applied to a real construction site to verify its capability and validity. It was founded that the causes of accidents were successfully removed, so the proposed model proved to be reasonable. Additional research is needed to resolve the technical problem how to adapt the countermeasures for accident prevention provided by the reasoning model.

  • PDF

Conceptual Design of Cutting System by Qualitative Reaoning (정성 추론에 의한 절삭 시스넴의 개념 설계)

  • 김성근;최영석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.531-535
    • /
    • 1996
  • Computer aided conceptual solution of engineering problems can be effectively implemented by qualitative reasoning based on a physical model. Qualitative reasoning needs modeling paradigm which provides intellignet control of modeling assumptions and robust inferences without quantitative information about the system. We developed reasoning method using new algebra of qualitative mathematics. The method is applied to a conceptual design scheme of anadaptive control system of cutting process. The method identifies differences between proportional and proportional-integral control scheme of cutting process. It is shown that unfeasible investment could be prevented in the early conceptual stage by the qualitative reasoning procedures proposed in this paper.

  • PDF