• Title/Summary/Keyword: Rear-time simulation

Search Result 60, Processing Time 0.026 seconds

Numerical Modeling to Evaluate Rear Crashworthiness for Round Recliner of Automotive Seats (자동차 시트용 라운드 리클라이너의 후방 충돌 성능 평가를 위한 수치해석 모델링)

  • Kim, Jung-Min;Lee, Kyoung-Taek;Kim, Heon-Young
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.1
    • /
    • pp.64-71
    • /
    • 2009
  • The development of more safe recliners is an important issue in the automotive industry. However, the development of new recliners is costly and take much time because it is typically based on experimental evaluation using prototypes. This study presents the evaluation of rear crashworthiness for round recliner using finite element method. That reduces the number of repeating test and gives an information about stiffness. To evaluate rear crashworthiness, the FMVSS 301 simulation and pendulum impact simulation were performed. The load path on two simulations was observed and compared each other in this paper. Also stress, strain and internal energy was compared. It is attempted the tooth strength simulation using a substructure option on PAM-CRASH.

Relative Risk Evaluation of Front-to-Rear-End Collision when Drivers Using Electronic Devices: A Simulation Study (추출가능 상황에서 전자기기 사용유형에 따른 상대적 위험성평가: 운전 시뮬레이션 연구)

  • Lee, Se-Won;Lee, Jae-Sik
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.4
    • /
    • pp.104-110
    • /
    • 2009
  • In this driving simulation study, the impairing effects of various types of electronic devices usage(i. e., destination search by using in-vehicle navigation system, TV watching and dialing cellular phone) during driving on front-to-rear-end collision avoidance were investigated. Percentage of collisions, driving speeds when the drivers collided, and initial reaction time for collision avoidance were analyzed and compared as the dependent measures. The results indicated that (1) any types of electronic devices usage during driving induced more serious collision-related impairment than control condition where no additional task was required, and (2) in general, destination search task appeared to impair drivers collision avoidance performance more than the other task requirements in terms of percentage of collisions and initial reaction time for collision avoidance, but TV watching induced most serious collision impact. These results suggested that any types of electronic device usage could distract drivers attention from the primary task of driving, and be resulted in serious outcome in potentially risky situation of front-to-rear-end collision. In particular, mandatory use of eye-hand coordination and receiving feedback seemed to one of essential factor leading the drivers visual attentional distraction.

A Study on the Design of Propeller Shaft for Reduction of Torsional Vibration (비틀림짙동 저감을 위한 추진축 설계에 관한 연구)

  • 최은오;안병민;홍동표;정태진
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.7 no.7
    • /
    • pp.221-228
    • /
    • 1999
  • A full-time four wheel drive vehicle is driven literally full time by the front and the rear wheels. Front and rear drive shafts are rotated rapidly in the extremely torsional state, which can cause various vibration and noise problems. The purpose of this study is to reduce the vibration and the noise of the full -time four wheel drive vehicle. In this paper, both the causes and the methods for reduction of torsional vibration are suggested. For this study, the characteristics of the torsional vibration are analyzed by free and forced torsional vibration simulation. And this paper described the influence upon the torsional vibration with emphasis shafting system. The validity of simulation models is checked by the field test. The forced vibration simulation with the variations of shaft design factors are performed by the checked models. According to the simulation , the resonance region shifts and the torque fluctuation varies in the system,. Finally, the methods and the effects for the torsional vibration reduction in driveline are proposed.

  • PDF

An Experimental Study of Optimal Performance of Rear Wheel Steering Vehicle for Maneuverability (기동성을 위한 후륜 조향 차량의 최적 성능에 대한 연구)

  • Ann, Kookjin;Joa, Eunhyek;Park, Kwanwoo;Yoon, Youngsik;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.11 no.2
    • /
    • pp.23-28
    • /
    • 2019
  • This paper presents an optimal performance of rear wheel steering vehicle for maneuverability. The maneuverability of vehicle is evaluated in terms of yaw rate, body slip angle and driver input. The maneuverability of vehicle can be improved by rear wheel steering system. To obtain optimal performance of rear wheel steering vehicle, the optimal control history is designed. The high dimensional trajectory optimization problem is solved by formulating a quadratic program considering rear wheel steer input. To evaluate handling performance 7 degree-of-freedom vehicle model with actuation sub-models is designed. A step steer test is conducted to evaluate rear wheel steering vehicle. A response time, a TB factor, overshoot, and yaw rate gain are investigated through objective criteria, assessment webs. The handling performance of vehicle is evaluated via computer simulations. It has been shown from simulation studies that optimal controlled rear wheel steering vehicle provides improved performance compared to others.

Integrated Control of Torque Vectoring and Rear Wheel Steering Using Model Predictive Control (모델 예측 제어 기법을 이용한 토크벡터링과 후륜조향 통합 제어)

  • Hyunsoo, Cha;Jayu, Kim;Kyongsu, Yi
    • Journal of Auto-vehicle Safety Association
    • /
    • v.14 no.4
    • /
    • pp.53-59
    • /
    • 2022
  • This paper describes an integrated control of torque vectoring and rear wheel steering using model predictive control. The control objective is to minimize the yaw rate and body side slip angle errors with chattering alleviation. The proposed model predictive controller is devised using a linear parameter-varying (LPV) vehicle model with real time estimation of the varying model parameters. The proposed controller has been investigated via computer simulations. In the simulation results, the performance of the proposed controller has been compared with uncontrolled cases. The simulation results show that the proposed algorithm can improve the lateral stability and handling performance.

COMPLEX STOCHASTIC WHEELBASE PREVIEW CONTROL AND SIMULATION OF A SEMI-ACTIVE MOTORCYCLE SUSPENSION BASED ON HIERARCHICAL MODELING METHOD

  • Wu, L.;Chen, H.L.
    • International Journal of Automotive Technology
    • /
    • v.7 no.6
    • /
    • pp.749-756
    • /
    • 2006
  • This paper presents a complex stochastic wheelbase preview control method of a motorcycle suspension based on hierarchical modeling method. As usual, a vehicle suspension system is controlled as a whole body. In this method, a motorcycle suspension with five Degrees of Freedom(DOF) is dealt with two local independent 2-DOF suspensions according to the hierarchical modeling method. The central dynamic equations that harmonize local relations are deduced. The vertical and pitch accelerations of the suspension center are treated as center control objects, and two local semi-active control forces can be obtained. In example, a real time Linear Quadratic Gaussian(LQG) algorithm is adopted for the front suspension and the combination of the wheelbase preview and LQG control method is designed for the rear suspension. The results of simulation show that the control strategy has less calculating time and is convenient to adopt different control strategies for front and rear suspensions. The method proposed in this paper provides a new way for the vibration control of multi-wheel vehicles.

Analysis of Race Car Handling Characteristics Using DADS in Initial Design Step (DADS를 이용한 초기 설계 단계에서의 경기용 차량의 핸들링 특성 해석)

  • Jang, Woon-Geun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.11 no.2
    • /
    • pp.71-82
    • /
    • 2008
  • In this study, 3 dimensional non-linear race car vehicle model including Chassis, steering and suspension systems were modeled by using Multi-Body Dynamics Simulation Program, DADS 9.5(Dynamic Analysis and Design System),which was used in kinematic and dynamic analysis. A full race car vehicle dynamics model using DADS program was presented and analysis was carried out to estimate the handling characteristics that may be very useful to design a race car in early design stage. The simulation of vehicle handling behavior for step steering input was simulated and compared with different design parameters: torsional stiffness of the front and rear anti roll bars, the motion ratio of the front and rear suspension system, the location of the tie rod joint, in multibody dynamic model. Therefore this simulation model before race car construction in early design step will be helpful for race car designer to save time and limited budget.

  • PDF

Multi Stage Simulations for Autobody Member Part (자동차 멤버 부품의 다공정 성형해석)

  • Park C.D.;Kim B.M.;Chung W.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.4 s.85
    • /
    • pp.281-288
    • /
    • 2006
  • Most of automobile member parts experience severe springback problems because of their complicated shape and high yielding strength. Now it becomes imperative to develop an effective method to resolve these problems. However, there remain several obstacles to get accurate estimation of dimensional shape. Especially the effective algorithms to simulate sheet metal forming processes including drawing, trimming, flanging and springback is demanded for the multi stage simulation of automobile member parts. In this study, for the purpose of accurate springback calculation, a simulation program which is robust in springback analysis is developed. Favorable enhancement in computation time for springback analysis by using latest equation solving technique and robust solution convergence by continuation method are achieved with the program. In analysis, the multi processes of rear side member are simulated to verify the system. For the evaluation of springback accuracy practically, all conditions including boundary conditions for springback analysis and inspection conditions for dimensional accuracy are applied. The springback results of simulations show good agreement with the experiments.

A Study on the Vehicle Dynamic Characteristics Considering Powertrain and Brake Systems (동력전달계와 제동계를 고려한 차량의 운동 특성에 관한 연구)

  • Bae, Sang-Woo;Lee, Chi-Bum;Yun, Jung-Rak;Lee, Jang-Moo;Tak, Tae-Oh
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.684-689
    • /
    • 2000
  • In this paper, the equations of motion about vehicle, powertrain and brake system were derived. The vehicle has eight degrees of freedom with nonlinear tire model and the powertrain has two degrees of freedom containing engine, torque converter and four speed automatic transmission. The brake system has two states about front and rear brake line pressures. The transient tire model with first order time lag is also subjoined for low speed or stop-and-go simulation. The modeling was derived considering two points - the fidelity and the simplicity. The simulation using this model is similar with real vehicle dynamic behavior and the model is made as simple as possible far fast simulation. It is validated that the derived vehicle model can be applicable to the real time simulation.

  • PDF

Safety Assessment of Signalized Intersection Using SSAM : A Case of Actuated Signal Control (SSAM을 이용한 신호교차로 안전성 평가(감응식 교통제어 도입사례를 중심으로))

  • Yun, Il-Soo;Lee, Choul-Ki;Choi, Jin-Hyung;Ko, Se-Jin
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.6
    • /
    • pp.1-14
    • /
    • 2011
  • The surrogate safety assessment model which was developed based on the conflict theory by FHWA in the US is software to analyze traffic conflicts using the individual vehicle trajectory data from a microscopic traffic simulation model. This study aims at assessing the safety of different signal control strategies, including pre-time and actuated signal control, using the SSAM. To this end, this study effort has developed a microscopic traffic simulation model using VISSIM through a field study, and then produced the surrogate measures, including TTC, PET, DR, MaxS and DeltaS, and the numbers of conflicts, including rear-end, right angle and lane-changing conflicts. The assessment results indicated that the actuated signal control may produce more conflicts in terms of rear-end conflicts. The use of SSAM in the safety assessments for diverse traffic alternatives in a safe and fast way may contribute to the improvement of safety in the roadway transportation.