In this paper, a wireless communication-based sensor data monitoring device with an explosion-proof (Exd IIC) case was implemented to enable installation at explosion-risk industrial sites such as plants. In existing industrial plant sites, most of the temperature sensors and vibration and impact sensors are wired up to several kilometers, which takes a lot of time and money to bury long pipes and cables. In addition, there are not many cases where some wireless devices have been applied to actual plant industry sites due to communication quality problems. Therefore, in order to solve this problem, zigbee mesh wireless communication was applied to provide high reliability wireless communication quality to industrial plant sites, and the time and cost incurred in new or additional installation of sensors could be greatly reduced. In particular, in the event of loss or error of some wireless communication devices, the communication network is automatically bypassed or recovered to enable real-time data monitoring.
Wireless Sensor Network typically incorporates various real time applications that must meet timing constraints under severe resource limitations. Due to the high data rate and burst traffic for that type of applications, occurrence of congestion is very common. Ensuring the end-to-end deadline under congested scenario is quite challenging. In this paper we propose a hop-by-hop rate control algorithm which avoids the congestion as well as ensures that the real time traffic will meet the end-to-end deadline by guaranteeing the meeting of local deadline at intermediate hop. Finally, simulation has demonstrated the effectiveness of our approach.
최근 4차 산업의 발전으로 대기오염 등의 환경문제가 심각해지고 있으며, 특히 산업현장에서 대기오염 물질이 많이 발생한다. 대기오염 물질은 다양한 종류가 있으며, 그 중 일산화탄소는 산업현장에서 발생하는 화재의 요소에 필수적으로 존재하기 때문에 실시간으로 모니터링 가능해야 한다. 또한 대기오염 물질 이외의 여러 환경요소들도 실시간으로 계측 가능한 원격 모니터링 시스템이 요구되고 있다. 본 논문에서는 산업현장의 환경을 원격으로 계측하기 위하여 무선통신을 이용한 모니터링 시스템을 제안한다. 제안한 모니터링 시스템은 센서부의 일산화탄소센서, 가연성가스센서, 온습도센서, 불꽃감지센서 등을 이용하여 데이터를 송신부의 아두이노에 수집한 후, 지그비를 이용하여 수신부로 전송한다. 전송한 데이터는 수신부 라즈베리파이의 데이터베이스에 저장하고, 저장한 데이터는 모니터링 시스템을 통하여 실시간 모니터링이 가능하다.
In recent automated manufacturing systems, compressed air-based pneumatic cylinders have been widely used for basic perpetration including picking up and moving a target object. They are relatively categorized as small machines, but many linear or rotary cylinders play an important role in discrete manufacturing systems. Therefore, sudden operation stop or interruption due to a fault occurrence in pneumatic cylinders leads to a decrease in repair costs and production and even threatens the safety of workers. In this regard, this study proposed a fault detection technique by developing a time-variant deep learning model from multivariate sensor data analysis for estimating a current health state as four levels. In addition, it aims to establish a real-time fault detection system that allows workers to immediately identify and manage the cylinder's status in either an actual shop floor or a remote management situation. To validate and verify the performance of the proposed system, we collected multivariate sensor signals from a rotary cylinder and it was successful in detecting the health state of the pneumatic cylinder with four severity levels. Furthermore, the optimal sensor location and signal type were analyzed through statistical inferences.
In this paper, the implementation of a new AF(Automatic Focusing) system for a digital still camera is introduced. The proposed system operates in real-time while adjusting focus after the measurement of distance to an object using a passive sensor, which is different from a typical method. In audition, measurement errors were minimized by using the data acquired empirically, and the optimal measuring time was obtained using EV(Exposure Value) which is calculated from CCD luminance signal. Moreover, this system adopted an auxiliary light source for focusing in absolute dark conditions, which is very hard for CCD image Processing. Since this is an open-loop system adjusting focus immediately after the distance measurement, it guarantees real-time operation. The performance of this new AF system was verified by comparing the focusing value curve obtained from AF experiment with the one from the measurement by MF(Manual-Focusing). In both case, edge detector was used for various objects and backgrounds.
International journal of advanced smart convergence
/
제7권4호
/
pp.75-83
/
2018
Predictive IoT Sensor Algorithm is a technique of data science that helps computers learn from existing data to predict future behaviors, outcomes, and trends. This algorithm is a cloud predictive analytics service that makes it possible to quickly create and deploy predictive models as analytics solutions. Sensors and computers collect and analyze data. Using the time series prediction algorithm helps to predict future temperature. The application of this IoT in industrial environments like power plants and factories will allow organizations to process much larger data sets much faster and precisely. This rich source of sensor data can be networked, gathered and analyzed by super smart software which will help to detect problems, work more productively. Using predictive IoT technology - sensors and real-time monitoring - can help organizations exactly where and when equipment needs to be adjusted, replaced or how to act in a given situation.
Hyunwoo Joe;Hyunsuk Kim;Seung-Jun Lee;Tae Sung Park;Myung-Jun Shin;Lee Hooman;Daesub Yoon;Woojin Kim
ETRI Journal
/
제45권4호
/
pp.603-614
/
2023
Advancements in remote medical technologies and smart devices have led to expectations of contactless rehabilitation. Conventionally, rehabilitation requires clinicians to perform routine muscle function assessments with patients. However, assessment results are difficult to cross-reference owing to the lack of a gold standard. Thus, the application of remote smart rehabilitation systems is significantly hindered. This study analyzes the factors affecting the real-time evaluation of muscle function based on biometric sensor data so that we can provide a basis for a remote system. We acquired real clinical stroke patient data to identify the meaningful features associated with normal and abnormal musculature. We provide a system based on these emerging features that assesses muscle functionality in real time via streamed biometric signal data. A system view based on the amount of data, data processing speed, and feature proportions is provided to support the production of a rudimentary remote smart rehabilitation system.
고정 싱크 로드를 갖는 무선 센서 네트워크에서 싱크 주변 무선 센서 노드들은 배터리 에너지가 급속히 소모되는 문제를 발생시킨다. 이를 해결하기 위하여 모바일 싱크를 사용하여 데이타 수집을 하므로 무선 센서 노드들의 에너지 소모를 분산시키는 기법들에 대한 연구가 진행되고 있다. 그러나, 모바일 싱크는 움직이는 특성을 가지고 있으므로 모바일 싱크를 사용할 경우에는 각 센서노드들로부터 균등한 양의 데이타를 수집하기 위한 데이타 수집 스케줄링이 필요하다. 실시간적 특성을 만족시켜야하는 무선 센서 네트워크의 응용 환경에서는 균등치 못한 데이타 수집은 긴급한 사건들에 대한 처리가 가능하지 않게 한다. 본 논문에서는 모바일 싱크를 이용한 센서 네트워크에서 무선 센서 노드들로부터 균등한 데이타 수집을 위한 데이타 가중치 기반 스케줄링 기법을 제안한다 제안된 기법은 센서 노드들이 모바일 싱크와의 통신범위 안에 남아있을 수 있는 시간과 각각의 무선 센서 노드들이 모바일 싱크에게 전송한 데이터양을 스케줄링의 기준으로 사용한다. 실험을 통하여 모바일 싱크를 갖는 무선 센서 네트워크에서 제안된 기법과 기존의 데이타 수집 방법들의 성능을 평가한다. 실험 결과는 제안된 기법이 무선 센서 노드들로 부터의 데이타 수집에 있어서 가장 균등 데이타 수집을 수행함을 보인다.
제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
/
pp.660-665
/
1993
Neural networks are used in the framework of sensorbased tracking control of robot manipulators. They learn by practice movements the relationship between PSD ( an analog Position Sensitive Detector) sensor readings for target positions and the joint commands to reach them. Using this configuration, the system can track or follow a moving or stationary object in real time. Furthermore, an efficient neural network architecture has been developed for real time learning. This network uses multiple sets of simple backpropagation networks one of which is selected according to which division (corresponding to a cluster of the self-organizing feature map) in data space the current input data belongs to. This lends itself to a very fast training and processing implementation required for real time control.
센서 네트워크에서는 데이터의 실시간 처리가 중요한 요소 중의 하나이다. 각 노드들이 감지한 데이터들은 정해진 시간 내에 전송 되어야만 필요한 시기에 정확한 처리가 가능하다. 따라서 노드들이 데이터를 정해진 시간 내에 제대로 전달하고 있는가를 점검하는 것은 매우 중요하다. 최근 리얼타임 임베디드 시스템이 점점 더 정확해져서 신뢰성 있고 정교한 서비스를 제공할 수 있게 되었다. 임베디드 시스템의 본래의 복잡함 때문에 물리세계에서의 예측의 어려움과 안전한 설계의 어려움은 런타임에서 시스템 제약사항에 위배되는 것과 예상치 못한 상황을 야기시키는 원인이 된다. 각 노드들이 감지한 데이터를 정해진 시간 내에 전달해야 필요한 시기에 적합한 처리가 가능하기 때문에 본 논문에서는 데이터 전송시간에 대한 모니터링을 통하여 센서 네트워크에 존재하는 노드들이 허용시간 범위 내에서 서버로 데이터를 전송하고 있는가를 확인하기 위한 데이터 전송시간 분석 시스템을 구현 하였다. 시스템 구현을 위하여 데이터 전송시간 분석을 위한 절차를 제시했고, 제시한 절차에 따라 전송시간을 분석하기 위해 필요한 시간차 분석 방법, 데이터 송수신 시간 수집 방법 및 데이터 전송시간 계산 방법을 제시했다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.