• Title/Summary/Keyword: Real-time sensor data

Search Result 1,234, Processing Time 0.033 seconds

Estimation of Nitrogen Uptake and Biomass of Rice (Oryza sativa L.) Using Ground-based Remote Sensing Techniques (지상 원격측정 센서를 활용한 벼의 생체량과 질소 흡수량 추정)

  • Gong, Hyo-Young;Kang, Seong-Soo;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.779-787
    • /
    • 2011
  • This study was conducted to evaluate the usefulness of ground-based remote sensing for the estimation of rice yield and application rate of N-fertilizer during growing season. Dongjin-1, Korean cultivar of rice was planted on May 30, 2006 and harvested on October 9, 2006. Chlorophyll content and LAI (leaf area index) were measured using Minolta SPAD-502 and AccuPAR model LP-80, respectively. Reflectance indices were determined with passive sensors using sunlight and four types of active sensors using modulated light, respectively. Reflectance indices and growth rate were measured three times from 29 days to 87 days after rice plating and at harvesting day. The result showed that values of growing characteristics and reflectance indices were highly correlated. Growing characteristics to show significant correlation with reflectance indices were in order of followings: fresh weight > N uptake > dry weight > height > No. of tiller > N content. Chlorophyll contents measured by chlorophyll meter (SPAD 502) showed high correlation with nitrogen concentration (r=$0.743^{**}$), although the correlation coefficients between remote sensing data and nitrogen concentration were higher. LAI was highly correlated with dry weight (r=$0.931^{**}$), but relationship between LAI and nitrogen concentration (r=$0.505^*$) was relatively low. The data of CC-passive sensor were negatively correlated with those of the near-infrared. NDVI correlation coefficients found more useful to identify the growth characteristics rather than data from single wavelength. Both passive sensor and active sensor were highly significantly correlated with growth characteristics. Consequently, quantifying the growth characteristics using reflectance indices of ground-based remote sensing could be a useful tool to determine the application rate of N fertilizer non-destructively and in real-time.

Establishment of location-base service(LBS) disaster risk prediction system in deteriorated areas (위치기반(LBS) 쇠퇴지역 재난재해 위험성 예측 시스템 구축)

  • Byun, Sung-Jun;Cho, Yong Han;Choi, Sang Keun;Jo, Bong Rae;Lee, Gun Won;Min, Byung-Hak
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.570-576
    • /
    • 2020
  • This study uses beacons and smartphone Global Positioning System (GPS) receivers to establish a location-based disaster/hazard prediction system. Beacons are usually installed indoors to locate users using triangulation in the room, but this study is differentiated from previous studies because the system is used outdoors to collect information on registration location and temperature and humidity in hazardous areas. In addition, since it is installed outdoors, waterproof, dehumidifying, and dustproof functions in the beacons themselves are required, and in case of heat and humidity, the sensor must be exposed to the outside, so the waterproof function is supplemented with a separate container. Based on these functions, information on declining and vulnerable areas is identified in real time, and temperature/humidity information is collected. We also propose a system that provides weather and fine-dust information for the area concerned. User location data are acquired through beacons and smartphone GPS receivers, and when users transmit from declining or vulnerable areas, they can establish the data to identify dangerous areas. In addition, temperature/humidity data in a microspace can be collected and utilized to build data to cope with climate change. Data can be used to identify specific areas of decline in a microspace, and various analyses can be made through the accumulated data.

Hydrophobicity and Adhesion of SiO2/Polyurethane Nanocomposites Topcoat for Aircraft De-icing with Different Pre-curing Time (선경화 시간에 따른 항공기 De-icing용 나노실리카/폴리우레탄 복합재료 탑코트의 소수성 및 접착특성 평가)

  • Kim, Jong-Hyun;Shin, Pyeong-Su;Kwon, Dong-Jun;Park, Joung-Man
    • Composites Research
    • /
    • v.33 no.6
    • /
    • pp.365-370
    • /
    • 2020
  • The icing formation at aircraft occur problems such as increasing weight of the body, fuel efficiency reduction, drag reduction, the error of sensor, and etc. The viscosity of polyurethane (PU) topcoat was measured at 60℃ in real time to set the pre-curing time. SiO2 nanoparticles were dispersed in ethanol using ultra-sonication method. The SiO2/ethanol solution was sprayed on PU topcoat that was not cured fully with different pre-curing conditions. Surface roughness of SiO2/PU nanocomposites were measured using surface roughness tester and the surface roughness data was visualized using 3D mapping. The adhesion property between SiO2 and PU topcoat was evaluated using adhesion pull-off test. The static contact angle was measured using distilled water to evaluate the hydrophobicity. Finally, the pre-curing time of PU topcoat was optimized to exhibit the hydrophobicity of SiO2/PU topcoat.

Online Monitoring System based notifications on Mobile devices with Kinect V2 (키넥트와 모바일 장치 알림 기반 온라인 모니터링 시스템)

  • Niyonsaba, Eric;Jang, Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.6
    • /
    • pp.1183-1188
    • /
    • 2016
  • Kinect sensor version 2 is a kind of camera released by Microsoft as a computer vision and a natural user interface for game consoles like Xbox one. It allows acquiring color images, depth images, audio input and skeletal data with a high frame rate. In this paper, using depth image, we present a surveillance system of a certain area within Kinect's field of view. With computer vision library(Emgu CV), if an object is detected in the target area, it is tracked and kinect camera takes RGB image to send it in database server. Therefore, a mobile application on android platform was developed in order to notify the user that Kinect has sensed strange motion in the target region and display the RGB image of the scene. User gets the notification in real-time to react in the best way in the case of valuable things in monitored area or other cases related to a reserved zone.

A Study on a Feedback-Centric Piano Education System Using Kinect Sensors (키넥트를 활용한 피드백 중심의 피아노 교육 방안 연구)

  • Park, So Hyun;Ihm, Sun Young;Park, Eun Young;Son, Jong Seo;Park, Young Ho
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.9
    • /
    • pp.403-408
    • /
    • 2015
  • Kinect sensors have the ability to recognize the behavior and voice of the user. Due to its low-cost and high accessibility, Kinect sensors have been used in various fields, including healthcare, education and so on. In this paper, we propose to use Kinect in piano education. Specifically, the proposed method first recognizes the coordinate values of user's posture, compares them with coordinate values of teacher's posture and provide real-time feedbacks to the user. This enables user to keep the correct posture even when he is learning piano without a teacher. However, since the piano education is a long process, it is difficult to achieve the correct posture as a teacher immediately. Thus, we propose a user-oriented method to measure the error tolerance rate. The proposed method is the first feedback based piano education system that uses Kinect sensors.

Temperature Detection and Monitoring System of Livestock Through Ear-Tag Based on IoT (IoT 기반의 이표를 통한 가축 온도 변화 감지 및 모니터링 시스템)

  • Park, Young-Soo;Park, Kyoung-Yong;Kim, Min-Sun;Park, Jun-Kyu;Kwon, Seong-Geun
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.3
    • /
    • pp.474-481
    • /
    • 2017
  • In Korea, foot-and-mouth disease has not been reported for several decades, but it began to develop again in 2000. For 2010~2011, when the worst occurred, 3.5 million animals were disposed of resulting in a loss of 2.8 trillion won. In order to prevent the harmful effects of foot-and-mouth disease, vaccination and housing management are being implemented. Despite these measures, foot-and-mouth disease is infected with air through the respiratory tract and accompanies fever after latency. Therefore, it is recognized that measuring and managing the body temperature of livestock at the early stage is the first step of managing this disease. In this paper, we propose a temperature monitoring system that can measure the body temperature by incorporating temperature sensor mounted in ear-tag of cattle and collect body temperature data of each individual cattle through BLE into the control server. The proposed body temperature monitoring system has various advantages such as easy installation without the help of livestock specialists and not damaging the organs of the livestock. So, it is possible to manage the abnormal symptom of cattle in real time and it is believed that the proposed monitoring system will revolutionize the prevention of foot-and-mouth disease.

Design of Fault Diagnostic and Fault Tolerant System for Induction Motors with Redundant Controller Area Network

  • Hong, Won-Pyo;Yoon, Chung-Sup;Kim, Dong-Hwa
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.371-374
    • /
    • 2004
  • Induction motors are a critical component of many industrial processes and are frequently integrated in commercially available equipment. Safety, reliability, efficiency, and performance are some of the major concerns of induction motor applications. Preventive maintenance of induction motors has been a topic great interest to industry because of their wide range application of industry. Since the use of mechanical sensors, such as vibration probes, strain gauges, and accelerometers is often impractical, the motor current signature analysis (MACA) techniques have gained murk popularity as diagnostic tool. Fault tolerant control (FTC) strives to make the system stable and retain acceptable performance under the system faults. All present FTC method can be classified into two groups. The first group is based on fault detection and diagnostics (FDD). The second group is independent of FDD and includes methods such as integrity control, reliable stabilization and simultaneous stabilization. This paper presents the fundamental FDD-based FTC methods, which are capable of on-line detection and diagnose of the induction motors. Therefore, our group has developed the embedded distributed fault tolerant and fault diagnosis system for industrial motor. This paper presents its architecture. These mechanisms are based on two 32-bit DSPs and each TMS320F2407 DSP module is checking stator current, voltage, temperatures, vibration and speed of the motor. The DSPs share information from each sensor or DSP through DPRAM with hardware implemented semaphore. And it communicates the motor status through field bus (CAN, RS485). From the designed system, we get primitive sensors data for the case of normal condition and two abnormal conditions of 3 phase induction motor control system is implemented. This paper is the first step to drive multi-motors with serial communication which can satisfy the real time operation using CAN protocol.

  • PDF

TRED : Twitter based Realtime Event-location Detector (트위터 기반의 실시간 이벤트 지역 탐지 시스템)

  • Yim, Junyeob;Hwang, Byung-Yeon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.8
    • /
    • pp.301-308
    • /
    • 2015
  • SNS is a web-based online platform service supporting the formation of relations between users. SNS users have usually used a desktop or laptop for this purpose so far. However, the number of SNS users is greatly increasing and their access to the web is improving with the spread of smart phones. They share their daily lives with other users through SNSs. We can detect events if we analyze the contents that are left by SNS users, where the individual acts as a sensor. Such analyses have already been attempted by many researchers. In particular, Twitter is used in related spheres in various ways, because it has structural characteristics suitable for detecting events. However, there is a limitation concerning the detection of events and their locations. Thus, we developed a system that can detect the location immediately based on the district mentioned in Twitter. We tested whether the system can function in real time and evaluated its ability to detect events that occurred in reality. We also tried to improve its detection efficiency by removing noise.

The Development of Straddle Packer Hydraulic Testing Equipment to Characterize Permeability in Deep Boreholes (장심도 시추공 정밀수리시험 장비 구축)

  • Kim, Kyung-Su;Park, Kyung-Woo;Ji, Sung-Hoon
    • The Journal of Engineering Geology
    • /
    • v.20 no.2
    • /
    • pp.213-220
    • /
    • 2010
  • The permeability characterization on the natural barrier for deep geological disposal of radioactive waste is very critical to evaluate total safety and performance assessment of disposal site. However, the confidence level in using previous hydraulic testing equipments consist of simple components to estimate rock mass permeability is not high enough to reflect in situ condition. The purpose of this research is to establish an advanced hydraulic testing equipment, which is applicable to deep borehole (up to 1,000 m), through the improvement of technical problems of previous packer systems. Especially, the straddle packer hydraulic testing equipment was designed to adopt both the hydraulic downhole shut-in valve(H-DHSIV) to minimize the wellbore storage effect and the real time data acquisition system to measure the pressure changes of test interval including its upper and lower parts. The results from this research lead to not only improve current technical level in the field of hydraulic testing but also provide important information to radioactive waste disposal technology development and site characterization project.

Design and Development of the Multiple Kinect Sensor-based Exercise Pose Estimation System (다중 키넥트 센서 기반의 운동 자세 추정 시스템 설계 및 구현)

  • Cho, Yongjoo;Park, Kyoung Shin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.3
    • /
    • pp.558-567
    • /
    • 2017
  • In this research, we developed an efficient real-time human exercise pose estimation system using multiple Kinects. The main objective of this system is to measure and recognize the user's posture (such as knee curl or lunge) more accurately by employing Kinects on the front and the sides. Especially it is designed as an extensible and modular method which enables to support various additional postures in the future. This system is configured as multiple clients and the Unity3D server. The client processes Kinect skeleton data and send to the server. The server performs the multiple-Kinect calibration process and then applies the pose estimation algorithm based on the Kinect-based posture recognition model using feature extractions and the weighted averaging of feature values for different Kinects. This paper presents the design and implementation of the human exercise pose estimation system using multiple Kinects and also describes how to build and execute an interactive Unity3D exergame.