• Title/Summary/Keyword: Real-time sensing

Search Result 784, Processing Time 0.031 seconds

An anti-noise real-time cross-correlation method for bolted joint monitoring using piezoceramic transducers

  • Ruan, Jiabiao;Zhang, Zhimin;Wang, Tao;Li, Yourong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.281-294
    • /
    • 2015
  • Bolted joint connection is the most commonly used connection element in structures and devices. The loosening due to external dynamic loads cannot be observed and measured easily and may cause catastrophic loss especially in an extreme requirement and/or environment. In this paper, an innovative Real-time Cross-Correlation Method (RCCM) for monitoring of the bolted joint loosening was proposed. We apply time reversal process on stress wave propagation to obtain correlation signal. The correlation signal's peak amplitude represents the cross-correlation between the loosening state and the baseline working state; therefore, it can detect the state of loosening. Since the bolt states are uncorrelated with noise, the peak amplitude will not be affected by noise and disturbance while it increases SNR level and increases the measured signals' reliability. The correlation process is carried out online through physical wave propagation without any other post offline complicated analyses and calculations. We implemented the proposed RCCM on a single bolt/nut joint experimental device to quantitatively detect the loosening states successfully. After that we implemented the proposed method on a real large structure (reaction wall) with multiple bolted joint connections. Loosening indexes were built for both experiments to indicate the loosening states. Finally, we demonstrated the proposed method's great anti-noise and/or disturbance ability. In the instrumentation, we simply mounted Lead Zirconium Titanate (PZT) patches on the device/structure surface without any modifications of the bolted connection. The low-cost PZTs used as actuators and sensors for active sensing are easily extended to a sensing network for large scale bolted joint network monitoring.

A Design of Air Compressor Remote Control System Using USN Technology (USN 기술을 이용한 공기압축기 원격관리 시스템 설계)

  • Hwang, Moon-Young
    • Korean Journal of Artificial Intelligence
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Compressed Air is an important energy source used in most factories nowadays. The automation trend using air compressor has been gradually increasing with the interest of the 4th industry in recent years. With the air compressor system, it is possible to construct the device at low cost and easily achieve automation and energy saving. In addition, With trend of FA, miniaturation and light weight manufacturing trend expand their use in the electronics, medical, and food sectors. Research method is to design the technology for the remote control of the following information as USN base. Development of flexible sensing module from real time observation module for fusion of IT technology in compressed air systems, design and manufacture of flexible sensing module, and realiability assessment. Design of real-time integrated management system for observation data of compressed air system - Ability to process observation data measured in real time into pre-processing and analysis data. This study expects unconventionally decreasing effect of energy cost that takes up 60~70% of air compressor layout and operation and maintenance management cost through USN(Ubiquitous Sensor Network) technology by using optimum operational condition from real time observation module. In addition, by preventing maintenance cost from malfunction of air compressor beforehand, maintenance cost is anticipated to cut back.

Adjusting Transmission Power for Real-Time Communications in Wireless Sensor Networks

  • Kim, Ki-Il
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.1
    • /
    • pp.21-26
    • /
    • 2012
  • As the new requirements for wireless sensor networks are emerging, real-time communications is becoming a major research challenge because resource-constrained sensor nodes are not powerful enough to accommodate the complexity of the protocol. In addition, an efficient energy management scheme has naturally been a concern in wireless sensor networks for a long time. However, the existing schemes are limited to meeting one of these two requirements. To address the two factors together, we propose real-time communications with two approaches, a protocol for satisfied conditions and one for unsatisfied. Under the satisfied requirement, existing real-time protocol is employed. On the other hand, for the unsatisfied requirement, the newly developed scheme replaces the existing scheme by adjusting the transmission range of some surplus nodes. By expanding the transmission range, the end-to-end delay is shortened because the number of intermediate nodes decreases. These nodes conserve their energy for real-time communications by avoiding other activities such as sensing, forwarding, and computing. Finally, simulation results are given to demonstrate the feasibility of the proposed scheme in high traffic environments.

Real-Time White Spectrum Recognition for Cognitive Radio Networks over TV White Spaces

  • Kim, Myeongyu;Jeon, Youchan;Kim, Haesoo;Kim, Taekook;Park, Jinwoo
    • Journal of Communications and Networks
    • /
    • v.16 no.2
    • /
    • pp.238-244
    • /
    • 2014
  • A key technical challenge in TV white spaces is the efficient spectrum usage without interfering with primary users. This paper considers available spectrum discovery scheme using in-band sensing signal to support super Wi-Fi services effectively. The proposed scheme in this paper adopts non-contiguous orthogonal frequency-division multiplexing (NC-OFDM) to utilize the fragmented channel in TV white space due to microphones while this channel cannot be used in IEEE 802.11af. The proposed solution is a novel available spectrum discovery scheme by exploiting the advantages of a sensing signaling. The proposed method achieves considerable improvement in throughput and delay time. The proposed method can use more subcarriers for transmission by applying NC-OFDM in contrast with the conventional IEEE 802.11af standard. Moreover, the increased number of wireless microphones (WMs) hardly affects the throughput of the proposed method because our proposal only excludes some subcarriers used by WMs. Additionally, the proposed method can cut discovery time down to under 10 ms because it can find available channels in real time by exchanging sensing signal without interference to the WM.

Comparison and Performance Validation of On-line Aerial Triangulation Algorithms for Real-time Image Georeferencing (실시간 영상 지오레퍼런싱을 위한 온라인 항공삼각측량 알고리즘의 비교 및 성능 검증)

  • Choi, Kyoung-Ah;Lee, Im-Pyeong
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.1
    • /
    • pp.55-67
    • /
    • 2012
  • Real-time image georeferencing is required to generate spatial information rapidly from the image sequences acquired by multi-sensor systems. To complement the performance of position/attitude sensors and process in real-time, we should employ on-line aerial triangulation based on a sequential estimation algorithm. In this study, we thus attempt to derive an efficient on-line aerial triangulation algorithm for real-time georeferencing of image sequences. We implemented on-line aerial triangulation using the existing Given transformation update algorithm, and a new inverse normal matrix update algorithm based on observation classification, respectively. To compare the performance of two algorithms in terms of the accuracy and processing time, we applied these algorithms to simulated airborne multi-sensory data. The experimental results indicate that the inverse normal matrix update algorithm shows 40 % higher accuracy in the estimated ground point coordinates and eight times faster processing speed comparing to the Given transformation update algorithm. Therefore, the inverse normal matrix update algorithm is more appropriate for the real-time image georeferencing.

APPLICATION OF MERGED MICROWAVE GEOPHYSICAL OCEAN PRODUCTS TO CLIMATE RESEARCH AND NEAR-REAL-TIME ANALYSIS

  • Wentz, Frank J.;Kim, Seung-Bum;Smith, Deborah K.;Gentemann, Chelle
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.150-152
    • /
    • 2006
  • The DISCOVER Project (${\underline{D}}istributed$ ${\underline{I}}nformation$ ${\underline{S}}ervices$ for ${\underline{C}}limate$ and ${\underline{O}}cean$ products and ${\underline{V}}isualizations$ for ${\underline{E}}arth$ ${\underline{R}}esearch$) is a NASA funded Earth Science REASoN project that strives to provide highly accurate, carefully calibrated, long-term climate data records and near-real-time ocean products suitable for the most demanding Earth research applications via easy-to-use display and data access tools. A key element of DISCOVER is the merging of data from the multiple sensors on multiple platforms into geophysical data sets consistent in both time and space. The project is a follow-on to the SSM/I Pathfinder and Passive Microwave ESIP projects which pioneered the simultaneous retrieval of sea surface temperature, surface wind speed, columnar water vapor, cloud liquid water content, and rain rate from SSM/I and TMI observations. The ocean products available through DISCOVER are derived from multi-sensor observations combined into daily products and a consistent multi-decadal climate time series. The DISCOVER team has a strong track record in identifying and removing unexpected sources of systematic error in radiometric measurements, including misspecification of SSM/I pointing geometry, the slightly emissive TMI antenna, and problems with the hot calibration source on AMSR-E. This in-depth experience with inter-calibration is absolutely essential for achieving our objective of merging multi-sensor observations into consistent data sets. Extreme care in satellite inter-calibration and commonality of geophysical algorithms is applied to all sensors. This presentation will introduce the DISCOVER products currently available from the web site, http://www.discover-earth.org and provide examples of the scientific application of both the diurnally corrected optimally interpolated global sea surface temperature product and the 4x-daily global microwave water vapor product.

  • PDF

Energy-Efficient Real-Time Task Scheduling for Battery-Powered Wireless Sensor Nodes (배터리 작동식의 무선 센서 노드를 위한 에너지 효율적인 실시간 태스크 스케줄링)

  • Kim, Dong-Joo;Kim, Tae-Hoon;Tak, Sung-Woo
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.10
    • /
    • pp.1423-1435
    • /
    • 2010
  • Building wireless sensor networks requires a constituting sensor node to consider the following limited hardware resources: a small battery lifetime limiting available power supply for the sensor node, a low-power microprocessor with a low-performance computing capability, and scarce memory resources. Despite such limited hardware resources of the sensor node, the sensor node platform needs to activate real-time sensing, guarantee the real-time processing of sensing data, and exchange data between individual sensor nodes concurrently. Therefore, in this paper, we propose an energy-efficient real-time task scheduling technique for battery-powered wireless sensor nodes. The proposed energy-efficient task scheduling technique controls the microprocessor's operating frequency and reduces the power consumption of a task by exploiting the slack time of the task when the actual execution time of the task can be less than its worst case execution time. The outcomes from experiments showed that the proposed scheduling technique yielded efficient performance in terms of guaranteeing the completion of real-time tasks within their deadlines and aiming to provide low power consumption.

Drowsiness Sensing System by Detecting Eye-blink on Android based Smartphones

  • Vununu, Caleb;Seung, Teak-Young;Moon, Kwang-Seok;Lee, Suk-Hwan;Kwon, Ki-Ryong
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.5
    • /
    • pp.797-807
    • /
    • 2016
  • The discussion in this paper aims to introduce an approach to detect drowsiness with Android based smartphones using the OpenCV platform tools. OpenCV for Android actually provides powerful tools for real-time body's parts tracking. We discuss here about the maximization of the accuracy in real-time eye tracking. Then we try to develop an approach for detecting eye blink by analyzing the structure and color variations of human eyes. Finally, we introduce a time variable to capture drowsiness.

On-line Phase Tracking of Patch Type EFPI Sensor and Fuzzy Logic Vibration Control (패치형 광섬유 센서를 이용한 구조물의 동특성 감지 및 퍼지 진동 제어)

  • 한재흥;장영환;김도형;이인
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.568-574
    • /
    • 2004
  • On-line phase tracking of an extrinsic Fabry-Perot interferometer (EFPI) and experimental vibration control of a composite beam with a sensing-patch are investigated. We propose a sensing-patch for the compensation of the interferometric non-linearity. In this paper, a sensing-patch that comprises an EFPI and a piezo ceramic(PZT) is fabricated and the characteristics of the sensing-patch are experimentally investigated. A simple and practical logic is applied for the real-time tracking of optical phase of an interferometer. Experimental results show that the proposed sensing-patch does not have the non-linear behavior of conventional EFPI and hysteresis of piezoelectric material. Moreover, it has good strain resolution and wide dynamic sensing range. Finally, the vibration control with the developed sensing-patch has been performed using Fuzzy logic controller, and the possibility of sensing-patch as a sensoriactuator is considered.

  • PDF