• Title/Summary/Keyword: Real-time search keywords

Search Result 20, Processing Time 0.023 seconds

Estimating long-term sustainability of real-time issues on portal sites (포털사이트 실시간이슈 지속가능성 평가)

  • Chong, Min-Young
    • Journal of Digital Convergence
    • /
    • v.17 no.12
    • /
    • pp.255-260
    • /
    • 2019
  • Real-time search keywords are not only limited to search keywords that are rapidly increasing interest in real-time, but also have a limitation that they are difficult to determine the sustainability as there is a difference in ranking between portal sites. Estimating sustainability for real-time search keywords is significant in terms of overcoming these limitations and providing some predictability. In particular, long-term search keywords that last for more than a month are of high value as long-lasting social issues. Therefore, in this paper, we analyze the interest based on the ranking of the real-time search keywords and the duration based on sustained weeks, days and hours of real-time search keywords by each portal site and the integrated portal site, and then estimating sustainability based on high level of interest and duration, and present a method to derive real-time search issues with high long-term sustainability.

An Analysis on Internet Information using Real Time Search Words (실시간 검색어 분석을 이용한 인터넷 정보 관심도 분석)

  • Noh, Giseop
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.4
    • /
    • pp.337-341
    • /
    • 2018
  • As the online media continues to evolve and the mobile computing environment has improved dramatically, the distribution of Internet information has rapidly changed from one-sided to consumer-oriented. Therefore, measuring the interest of Internet information has become an important issue for suppliers and consumers. In this paper, we analyze the Internet information interest by analyzing the duration of real - time query by collecting data for one month by implementing real - time search word provided by domestic Internet information provider.

Design and Implementation of Real-Time Research Trend Analysis System Using Author Keyword of Articles (논문의 저자 키워드를 이용한 실시간 연구동향 분석시스템 설계 및 구현)

  • Kim, Young-Chan;Jin, Byoung-Sam;Bae, Young-Chul
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.1
    • /
    • pp.141-146
    • /
    • 2018
  • The authors' author keywords are the most important elements that characterize the contents of the paper, By analyzing this in real time and providing it to users, It is possible to grasp research trends. Unstructured data of a journal created in a paper is constructed as a database, make use of this to make index data structure that can search in real time. In the index data structure, a thesis containing a specific keyword is searched, By extracting and clustering the author keywords, By presenting to the user a word cloud that can be displayed by size according to the weight, designed a method to visualize research trends. We also present the results of the research trend analysis of the keywords "virus" and "iris recognition" in the implemented system.

The Development of Travel Demand Nowcasting Model Based on Travelers' Attention: Focusing on Web Search Traffic Information (여행자 관심 기반 스마트 여행 수요 예측 모형 개발: 웹검색 트래픽 정보를 중심으로)

  • Park, Do-Hyung
    • The Journal of Information Systems
    • /
    • v.26 no.3
    • /
    • pp.171-185
    • /
    • 2017
  • Purpose Recently, there has been an increase in attempts to analyze social phenomena, consumption trends, and consumption behavior through a vast amount of customer data such as web search traffic information and social buzz information in various fields such as flu prediction and real estate price prediction. Internet portal service providers such as google and naver are disclosing web search traffic information of online users as services such as google trends and naver trends. Academic and industry are paying attention to research on information search behavior and utilization of online users based on the web search traffic information. Although there are many studies predicting social phenomena, consumption trends, political polls, etc. based on web search traffic information, it is hard to find the research to explain and predict tourism demand and establish tourism policy using it. In this study, we try to use web search traffic information to explain the tourism demand for major cities in Gangwon-do, the representative tourist area in Korea, and to develop a nowcasting model for the demand. Design/methodology/approach In the first step, the literature review on travel demand and web search traffic was conducted in parallel in two directions. In the second stage, we conducted a qualitative research to confirm the information retrieval behavior of the traveler. In the next step, we extracted the representative tourist cities of Gangwon-do and confirmed which keywords were used for the search. In the fourth step, we collected tourist demand data to be used as a dependent variable and collected web search traffic information of each keyword to be used as an independent variable. In the fifth step, we set up a time series benchmark model, and added the web search traffic information to this model to confirm whether the prediction model improved. In the last stage, we analyze the prediction models that are finally selected as optimal and confirm whether the influence of the keywords on the prediction of travel demand. Findings This study has developed a tourism demand forecasting model of Gangwon-do, a representative tourist destination in Korea, by expanding and applying web search traffic information to tourism demand forecasting. We compared the existing time series model with the benchmarking model and confirmed the superiority of the proposed model. In addition, this study also confirms that web search traffic information has a positive correlation with travel demand and precedes it by one or two months, thereby asserting its suitability as a prediction model. Furthermore, by deriving search keywords that have a significant effect on tourism demand forecast for each city, representative characteristics of each region can be selected.

Nano Technology Trend Analysis Using Google Trend and Data Mining Method for Nano-Informatics (나노 인포매틱스 기반 구축을 위한 구글 트렌드와 데이터 마이닝 기법을 활용한 나노 기술 트렌드 분석)

  • Shin, Minsoo;Park, Min-Gyu;Bae, Seong-Hun
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.4
    • /
    • pp.237-245
    • /
    • 2017
  • Our research is aimed at predicting recent trend and leading technology for the future and providing optimal Nano technology trend information by analyzing Nano technology trend. Under recent global market situation, Users' needs and the technology to meet these needs are changing in real time. At this point, Nano technology also needs measures to reduce cost and enhance efficiency in order not to fall behind the times. Therefore, research like trend analysis which uses search data to satisfy both aspects is required. This research consists of four steps. We collect data and select keywords in step 1, detect trends based on frequency and create visualization in step 2, and perform analysis using data mining in step 3. This research can be used to look for changes of trend from three perspectives. This research conducted analysis on changes of trend in terms of major classification, Nano technology of 30's, and key words which consist of relevant Nano technology. Second, it is possible to provide real-time information. Trend analysis using search data can provide information depending on the continuously changing market situation due to the real-time information which search data includes. Third, through comparative analysis it is possible to establish a useful corporate policy and strategy by apprehending the trend of the United States which has relatively advanced Nano technology. Therefore, trend analysis using search data like this research can suggest proper direction of policy which respond to market change in a real time, can be used as reference material, and can help reduce cost.

Clustering of Web Objects with Similar Popularity Trends (유사한 인기도 추세를 갖는 웹 객체들의 클러스터링)

  • Loh, Woong-Kee
    • The KIPS Transactions:PartD
    • /
    • v.15D no.4
    • /
    • pp.485-494
    • /
    • 2008
  • Huge amounts of various web items such as keywords, images, and web pages are being made widely available on the Web. The popularities of such web items continuously change over time, and mining temporal patterns in popularities of web items is an important problem that is useful for several web applications. For example, the temporal patterns in popularities of search keywords help web search enterprises predict future popular keywords, enabling them to make price decisions when marketing search keywords to advertisers. However, presence of millions of web items makes it difficult to scale up previous techniques for this problem. This paper proposes an efficient method for mining temporal patterns in popularities of web items. We treat the popularities of web items as time-series, and propose gapmeasure to quantify the similarity between the popularities of two web items. To reduce the computation overhead for this measure, an efficient method using the Fast Fourier Transform (FFT) is presented. We assume that the popularities of web items are not necessarily following any probabilistic distribution or periodic. For finding clusters of web items with similar popularity trends, we propose to use a density-based clustering algorithm based on the gap measure. Our experiments using the popularity trends of search keywords obtained from the Google Trends web site illustrate the scalability and usefulness of the proposed approach in real-world applications.

Web Contents Mining System for Real-Time Monitoring of Opinion Information based on Web 2.0 (웹2.0에서 의견정보의 실시간 모니터링을 위한 웹 콘텐츠 마이닝 시스템)

  • Kim, Young-Choon;Joo, Hae-Jong;Choi, Hae-Gill;Cho, Moon-Taek;Kim, Young-Baek;Rhee, Sang-Yong
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.21 no.1
    • /
    • pp.68-79
    • /
    • 2011
  • This paper focuses on the opinion information extraction and analysis system through Web mining that is based on statistics collected from Web contents. That is, users' opinion information which is scattered across several websites can be automatically analyzed and extracted. The system provides the opinion information search service that enables users to search for real-time positive and negative opinions and check their statistics. Also, users can do real-time search and monitoring about other opinion information by putting keywords in the system. Proposing technique proved that the actual performance is excellent by comparison experiment with other techniques. Performance evaluation of function extracting positive/negative opinion information, the performance evaluation applying dynamic window technique and tokenizer technique for multilingual information retrieval, and the performance evaluation of technique extracting exact multilingual phonetic translation are carried out. The experiment with typical movie review sentence and Wikipedia experiment data as object as that applying example is carried out and the result is analyzed.

Protecting Multi Ranked Searchable Encryption in Cloud Computing from Honest-but-Curious Trapdoor Generating Center (트랩도어 센터로부터 보호받는 순위 검색 가능한 암호화 다중 지원 클라우드 컴퓨팅 보안 모델)

  • YeEun Kim;Heekuck Oh
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.6
    • /
    • pp.1077-1086
    • /
    • 2023
  • The searchable encryption model allows to selectively search for encrypted data stored on a remote server. In a real-world scenarios, the model must be able to support multiple search keywords, multiple data owners/users. In this paper, these models are referred to as Multi Ranked Searchable Encryption model. However, at the time this paper was written, the proposed models use fully-trusted trapdoor centers, some of which assume that the connection between the user and the trapdoor center is secure, which is unlikely that such assumptions will be kept in real life. In order to improve the practicality and security of these searchable encryption models, this paper proposes a new Multi Ranked Searchable Encryption model which uses random keywords to protect search words requested by the data downloader from an honest-but-curious trapdoor center with an external attacker without the assumptions. The attacker cannot distinguish whether two different search requests contain the same search keywords. In addition, experiments demonstrate that the proposed model achieves reasonable performance, even considering the overhead caused by adding this protection process.

Visualization Method of Document Retrieval Result based on Centers of Clusters (군집 중심 기반 문헌 검색 결과의 시각화)

  • Jee, Tae-Chang;Lee, Hyun-Jin;Lee, Yill-Byung
    • The Journal of the Korea Contents Association
    • /
    • v.7 no.5
    • /
    • pp.16-26
    • /
    • 2007
  • Because it is difficult on existing document retrieval systems to visualize the search result, search results show document titles and short summaries of the parts that include the search keywords. If the result list is long, it is difficult to examine all the documents at once and to find a relation among them. This study uses clustering to classify similar documents into groups to make it easy to grasp the relations among the searched documents. Also, this study proposes a two-level visualization algorithm such that, first, the center of clusters is projected to low-dimensional space by using multi-dimensional scaling to help searchers grasp the relation among clusters at a glance, and second, individual documents are drawn in low-dimensional space based on the center of clusters using the orbital model as a basis to easily confirm similarities among individual documents. This study is tested on the benchmark data and the real data, and it shows that it is possible to visualize search results in real time.

Real-Time Ransomware Infection Detection System Based on Social Big Data Mining (소셜 빅데이터 마이닝 기반 실시간 랜섬웨어 전파 감지 시스템)

  • Kim, Mihui;Yun, Junhyeok
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.10
    • /
    • pp.251-258
    • /
    • 2018
  • Ransomware, a malicious software that requires a ransom by encrypting a file, is becoming more threatening with its rapid propagation and intelligence. Rapid detection and risk analysis are required, but real-time analysis and reporting are lacking. In this paper, we propose a ransomware infection detection system using social big data mining technology to enable real-time analysis. The system analyzes the twitter stream in real time and crawls tweets with keywords related to ransomware. It also extracts keywords related to ransomware by crawling the news server through the news feed parser and extracts news or statistical data on the servers of the security company or search engine. The collected data is analyzed by data mining algorithms. By comparing the number of related tweets, google trends (statistical information), and articles related wannacry and locky ransomware infection spreading in 2017, we show that our system has the possibility of ransomware infection detection using tweets. Moreover, the performance of proposed system is shown through entropy and chi-square analysis.