• Title/Summary/Keyword: Real-time qRT-PCR

Search Result 185, Processing Time 0.029 seconds

Roles of miR-128 in Myogenic Differentiation and Insulin Signaling in Rat L6 Myoblasts (쥐L6 근원세포에서 miR-128의 근육세포 분화와 인슐린신호에서의 역할)

  • Oh, Myung-Ju;Kim, So-Hyeon;Kim, Ji-Hyun;Jhun, Byung H.
    • Journal of Life Science
    • /
    • v.30 no.9
    • /
    • pp.772-782
    • /
    • 2020
  • Skeletal muscle differentiation or myogenesis is important to maintain muscle mass and metabolic homeostasis. Muscle-specific microRNAs (miRNAs) are known to play a critical role in skeletal myogenic differentiation. In this study, we examined the expression profiling of miRNAs during myogenic differentiation in rat L6 myoblasts using rat miRNA microarrays. We identified the upregulated expression of miR-128 as well as several well-known myogenic miRNAs, including miR-1, miR-133b, and miR-206. We additionally confirmed the increased expression of miR-128 observed on microarray through quantitative real-time PCR (qRT-PCR), which showed similarly upregulated expression of both primary miR-128 and mature miR-128, consistent with the microarray findings. Furthermore, transfection of miR-128 into rat L6 myoblasts induced gene expression of myogenic markers such as muscle creatine kinase (MCK), myogenin, and myosin heavy chain (MHC). Protein expression of MHC was increased as well. Inhibition of miR-128 by inhibitory peptide nucleic acids (PNAs) blocked the expression of those myogenic markers. In addition, the transfection of miR-128 into rat L6 myoblasts enhanced the phosphorylation of Erk and Akt proteins stimulated by insulin, while simultaneously reversing the inhibited phosphorylation of Erk and Akt due to insulin resistance. These findings suggest that miR-128 may play important roles in myogenic differentiation and insulin signaling.

Short-Hairpin RNA-Mediated MTA2 Silencing Inhibits Human Breast Cancer Cell Line MDA-MB231 Proliferation and Metastasis

  • Lu, Jun;Jin, Mu-Lan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.14
    • /
    • pp.5577-5582
    • /
    • 2014
  • Objective: To observe the effects of metastasis-associated tumor gene family 2 (MTA2) depletion on human breast cancer cell proliferation and metastasis. Methods: A short-hairpin RNA targeting MTA2 was chemically synthesized and transfected into a lentivirus to construct Lv-shMTA2 for infection into the MDA-MB231 human breast cancer cell line. At 48 hours after infection cells were harvested and mRNA and protein levels of MTA2 were determined by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting, respectively. Cell viability and metastasis were assessed by CCK-8, wound-healing assay and Transwell assay, respectively. In addition, a xenograft model of human breast cancer was constructed to investigate cancerous cell growth and capacity for metastasis. Results: After infection with Lv-shMTA2, mRNA and protein levels of MTA2 was significantly reduced (p<0.05) and MDA-MB231 cell proliferation and metastasis were inhibited (p<0.05). In addition, mean tumor size was smaller than that in control group nude mice (p<0.05) and numbers of metastatic deposits in lung were lower than in control group mice (p<0.05). Depletion of MTA2 affected MMP-2 and apoptosis-related protein expression. Conclusions: For the first time to our knowledge we showed that MTA2 depletion could significantly inhibit human breast cancer cell growth and metastasis, implying that MTA2 might be involved in the progression of breast cancer. The role of MTA2 in breast cancer growth and metastasis might be linked with regulation of matrix metalloproteinase and apoptosis.

Modulated Gene Expression of Toxoplasma gondii Infected Retinal Pigment Epithelial Cell Line (ARPE-19) via PI3K/Akt or mTOR Signal Pathway

  • Zhou, Wei;Quan, Juan-Hua;Gao, Fei-Fei;Ismail, Hassan Ahmed Hassan Ahmed;Lee, Young-Ha;Cha, Guang-Ho
    • Parasites, Hosts and Diseases
    • /
    • v.56 no.2
    • /
    • pp.135-145
    • /
    • 2018
  • Due to the critical location and physiological activities of the retinal pigment epithelial (RPE) cell, it is constantly subjected to contact with various infectious agents and inflammatory mediators. However, little is known about the signaling events in RPE involved in Toxoplasma gondii infection and development. The aim of the study is to screen the host mRNA transcriptional change of 3 inflammation-related gene categories, PI3K/Akt pathway regulatory components, blood vessel development factors and ROS regulators, to prove that PI3K/Akt or mTOR signaling pathway play an essential role in regulating the selected inflammation-related genes. The selected genes include PH domain and leucine- rich-repeat protein phosphatases (PHLPP), casein kinase2 (CK2), vascular endothelial growth factor (VEGF), pigment epithelium-derived factor (PEDF), glutamate-cysteine ligase (GCL), glutathione S-transferase (GST), and NAD(P)H: quinone oxidoreductase (NQO1). Using reverse transcription polymerase chain reaction (RT-PCR) and quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR), we found that T. gondii up-regulates PHLPP2, $CK2{\beta}$, VEGF, GCL, GST and NQO1 gene expression levels, but down-regulates PHLPP1 and PEDF mRNA transcription levels. PI3K inhibition and mTOR inhibition by specific inhibitors showed that most of these host gene expression patterns were due to activation of PI3K/Akt or mTOR pathways with some exceptional cases. Taken together, our results reveal a new molecular mechanism of these gene expression change dependent on PI3K/Akt or mTOR pathways and highlight more systematical insight of how an intracellular T. gondii can manipulate host genes to avoid host defense.

Effect of 17β-estradiol on Ecdysteroid Pathway Related Genes in the Brackish Water Flea Diaphanosoma celebensis (17β-estradiol이 기수산 물벼룩의 Ecdysteroid 경로에 미치는 영향)

  • In, Soyeon;Yoo, Jewon;Cho, Hayoung;Lee, Young-Mi
    • Journal of Marine Life Science
    • /
    • v.5 no.2
    • /
    • pp.35-42
    • /
    • 2020
  • 17β-estradiol (E2) is a natural hormone secreted by ovary, and continuously discharged from household and livestock wastewater into aquatic environment. Due to its strong estrogenic activity, it has adverse effects on development and reproduction in crustacean as an endocrine disrupting chemical. Although ecdysteroid signaling pathway play a key role in development in crustacean, little information on transcriptional modulation of ecdysteroid-related genes in response to E2 is available in small crustacean. Here, we investigated the acute toxicity of E2 to obtain 24-h LCx values in the brackish water flea Diaphanosoma celebensis. Time-dependent expression patterns of seven ecdysteroid pathway - related genes (CYP314a1, EcRA, EcRB, USP, ERR, Vtg, VtgR) were further examined using quantitative real time reverse transcriptase polymerase chain reaction (qRT-PCR). As results, 24-h LC50 and LC10 values were 9.581 mg/l and 4.842 mg/l, respectively. The mRNA expression of CYP314a1, EcRA, USP, VtgR was significantly up-regulated at 12 or 24 h after exposure to E2. These findings indicate that E2 can affect their molting and reproduction by modulating the expression of ecdysteroid pathway - related in D. celebensis. This study will be useful for better understanding of molecular mode of action of endocrine disrupting chemicals on molting process in small crustacean.

microRNA Expression Profile in Patients with Stage II Colorectal Cancer: A Turkish Referral Center Study

  • Tanoglu, Alpaslan;Balta, Ahmet Ziya;Berber, Ufuk;Ozdemir, Yavuz;Emirzeoglu, Levent;Sayilir, Abdurrahim;Sucullu, Ilker
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.5
    • /
    • pp.1851-1855
    • /
    • 2015
  • Background: There are increasing data about microRNAs (miRNA) in the literature, providing abundant evidence that they play important roles in pathogenesis and development of colorectal cancer. In this study, we aimed to investigate the miRNA expression profiles in surgically resected specimens of patients with recurrent and non-recurrent colorectal cancer. Materials and Methods: The study population included 40 patients with stage II colorectal cancer (20 patients with recurrent tumors, and 20 sex and age matched patients without recurrence), who underwent curative colectomy between 2004 and 2011 without adjuvant therapy. Expression of 16 miRNAs (miRNA-9, 21, 30d, 31, 106a, 127, 133a, 133b, 135b, 143, 145, 155, 182, 200a, 200c, 362) was verified by quantitative real-time polymerase chain reaction (qRT-PCR) in all resected colon cancer tissue samples and in corresponding normal colonic tissues. Data analyses were carried out using SPSS 15 software. Values were statistically significantly changed in 40 cancer tissues when compared to the corresponding 40 normal colonic tissues (p<0.001). MiR-30d, miR-133a, miR-143, miR-145 and miR-362 expression was statistically significantly downregulated in 40 resected colorectal cancer tissue samples (p<0.001). When we compared subgroups, miRNA expression profiles of 20 recurrent cancer tissues were similar to all 40 cancer tissues. However in 20 non-recurrent cancer tissues, miR-133a expression was not significantly downregulated, moreover miR-133b expression was significantly upregulated (p<0.05). Conclusions: Our study revealed dysregulation of expression of ten miRNAs in Turkish colon cancer patients. These miRNAs may be used as potential biomarkers for early detection, screening and surveillance of colorectal cancer, with functional effects on tumor cell behavior.

IL-6-miR-210 Suppresses Regulatory T Cell Function and Promotes Atrial Fibrosis by Targeting Foxp3

  • Chen, YingWei;Chang, GuoDong;Chen, XiaoJie;Li, YunPeng;Li, HaiYu;Cheng, Dong;Tang, Yi;Sang, HaiQiang
    • Molecules and Cells
    • /
    • v.43 no.5
    • /
    • pp.438-447
    • /
    • 2020
  • The aim of this study was to explore the role of IL-6-miR-210 in the regulation of Tregs function and atrial fibrosis in atrial fibrillation (AF). The levels of interleukin (IL)-6 and IL-10 in AF patients were detected by using ELISA. Proportions of Treg cells were detected by fluorescence activated cell sorting analysis in AF patients. The expression of Foxp3, α-SMA, collagen I and collagen III were determined by western blot. The atrial mechanocytes were authenticated by vimentin immunostaining. The expression of miR-210 was performed by quantitative real-time polymerase chain reaction (qRT-PCR). TargetScan was used to predict potential targets of miR-210. The cardiomyocyte transverse sections in AF model group were observed by H&E staining. The myocardial filaments were observed by masson staining. The level of IL-6 was highly increased while the level of IL-10 (Tregs) was significantly decreased in AF patients as compared to normal control subjects, and IL-6 suppressed Tregs function and promoted the expression of α-SMA, collagen I and collagen III. Furthermore, miR-210 regulated Tregs function by targeting Foxp3, and IL-6 promoted expression of miR-210 via regulating hypoxia inducible factor-1α (HIF-1α). IL-6-miR-210 suppresses regulatory T cell function and promotes atrial fibrosis by targeting Foxp3.

Expression and Clinical Significance of MicroRNA-376a in Colorectal Cancer

  • Mo, Zhan-Hao;Wu, Xiao-Dong;Li, Shuo;Fei, Bing-Yuan;Zhang, Bin
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.21
    • /
    • pp.9523-9527
    • /
    • 2014
  • The incidence of colorectal cancer (CRC) is increasing in many Asian countries and microRNAs have already been proven to be associated with tumorigenesis. Currently, microRNA-376a (miR-376a) expression and association with clinical factors in CRC remains unclear. In this study, real-time quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) was carried out on 53 matched pairs of CRC and adjacent normal mucosa to investigate the expression levels of miR-376a. According to the high or low expression of miR-376a, patients were divided into two groups. The relationship between miR-376a expression and clinicopathological factors of 53 patients was evaluated. Survival analysis of 53 CRC patients was performed with clinical follow-up information and survival curves were assessed by the Kaplan-Meier method. Immunohistochemistry (IHC) staining was performed on sections of paraffin-embedded tissue to investigate the vascular endothelial growth factor (VEGF) expression. MiR-376a showed low expression in cancer tissues compared to the adjacent normal tissues and altered high miR-376a expression tended to be positively correlated with advanced lymph node metastasis and shorter patient survival. VEGF IHC positivity was significantly more common in patients with high expression levels of miR-376a.Those results demonstrated that miR-376a may be a meaningful prognostic biomarker and potential therapeutic target in colorectal cancer.

Silencing of Rac3 Inhibits Proliferation and Induces Apoptosis of Human Lung Cancer Cells

  • Liu, Tie-Qin;Wang, Ge-Bang;Li, Zheng-Jun;Tong, Xiang-Dong;Liu, Hong-Xu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.7
    • /
    • pp.3061-3065
    • /
    • 2015
  • Background: Rac3, a member of the Rac family of small guanosine triphosphatases (GTPases), regulates a variety of cell functions, including the organization of the cytoskeleton, cell migration, and invasion. Overexpression of Rac3 has been reported in several human cancers. However, the role of Rac3 in lung cancer (LC) has not been determined in detail. The purpose of this study was to investigate the effect of silencing of Rac3 expression in human LC cells and the consequences for cell survival. Materials and Methods: Lentivirus small hairpin RNA (shRNA) interference techniques were utilized to knock down the Rac3 gene. Gene and protein expression was quantified by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting. LC cell apoptosis was examined by annexin V-APC /propidium iodide staining. Results: Efficient silencing of Rac3 strongly inhibited A549 cell proliferation and colony formation ability, and significantly decreased tumor growth. Moreover, flow cytometry analysis showed that knockdown of Rac3 led to G2/M phase cell cycle arrest as well as an excess accumulation of cells in the G1 and S phase. Conclusions: Thus, functional analysis using shRNAs revealed a critical role for Rac3 in the tumor growth of LC cells. shRNA silencing of Rac3 could provide an effective strategy to treat LC.

Identification of Proteins Responsible for the Development of Adriamycin Resistance in Human Gastric Cancer Cells Using Comparative Proteomics Analysis

  • Yang, Yi-Xuan;Hu, Huai-Dong;Zhang, Da-Zhi;Ren, Hong
    • BMB Reports
    • /
    • v.40 no.6
    • /
    • pp.853-860
    • /
    • 2007
  • Resistance to anticancer drugs is a major obstacle in the effective treatment of tumors. To understand the mechanisms responsible for multidrug resistance (MDR), a proteomic approach was used to identify proteins that were expressed in different levels by the adriamycinresistant human gastric cancer cell line, SGC7901/ADR, and its parental cell line, SGC7901. Two-dimensional gel electrophoresis (2-DE) and image analysis was used to determine which protein spots were expressed in different levels by the two cell lines. These spots were then partially identified using ESI-Q-TOF mass spectrometry, and the differential expressional levels of the partially identified proteins were then determined by western blot analysis and real-time RT-PCR. Additionally, the association of Nucleophosmin (NPM1), a protein that was highly expressed by SGC7901/ADR, with MDR was analyzed using siRNA. As a result of this study, well-resolved, reproducible 2-DE patterns of SGC7901/ADR and SGC7901 were established, and 16 proteins that may playa role in the development of thermo resistance were identified. Additionally, suppression of NPMl expression was found to enhance adriamycin chemosensitivity in SGC7901/ADR. These results provide a fundamental basis for the elucidation of the molecular mechanism of MDR, which may assist in the treatment of gastric cancer.

Expression and Significance of Microsomal Prostaglandin Synthase-1 (mPGES-1) and Beclin-1 in the Development of Prostate Cancer

  • Xu, Lu-Wei;Qian, Ming;Jia, Rui-Peng;Xu, Zheng;Wu, Jian-Ping;Li, Wen-Cheng;Huang, Wen-Bin;Chen, Xing-Guo
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.4
    • /
    • pp.1639-1644
    • /
    • 2012
  • The aim of this study was to investigate the expression and significance of microsomal prostaglandin synthase-1 (mPGES-1) and Beclin-1 in the development of prostate cancer (PCa). Immunohistochemistry was performed on paraffin-embedded sections with rabbit polyclonal against mPGES-1 and Beclin-1 in 40 PCa, 40 benign prostatic hyperplasia (BPH) and 10 normal prostate specimens for this purpose. Quantitative real-time polymerase chain reaction (qRT-PCR) was applied for mRNA expression of mPGES-1 and Beclin-1, while MTT assays were used to ascertain the best working concentration of the mPGES-1 inhibitor (CAY10526). The effect of CAY10526 treatment on expression of Beclin-1 in DU-145 cells was studied using Western blot analysis. Localization of Beclin-1 and mPGES-1 was in endochylema. Significant differences in expression was noted among PCa, BPH and normal issues (P<0.05). Beclin-1 expression inversely correlated with mPGES-1 expression in PCa tissue (P<0.05). CAY10526 could significantly block mPGES-1 expression and the proliferation of DU-145 cells (P<0.05), while increasing Beclin-1 levels (P<0.05). Overexpression of mPGES-1 could decrease the autophagic PCa cell death. Inhibiting the expression of mPGES-1 may lead to DU-145 cell death and up-regulation of Beclin-1. The results suggest that inhibition of mPGES-1 may have therapeutic potential for PCa in the future.