• Title/Summary/Keyword: Real-time inspection system

Search Result 355, Processing Time 0.029 seconds

Development of Charge Indicator Inspection System for Plug-in Hybrid Electric Vehicle (PHEV용 Charge Indicator 시험기 개발)

  • Kim, Jin Young;Kang, Joonhee
    • Journal of Sensor Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.155-159
    • /
    • 2016
  • In this work, we have developed a test system to examine whether the charge indicator of the plug-in hybrid electric vehicle (PHEV) works properly or not. In PHEV, the driver should charge the necessary electricity by plugging in manually and be able to know the charging status through the charge indicator conveniently located for the charging individual. Our system used the CAN bus to transmit the same commands from ECU to the indicator to test the proper operation of the indicator lights. It measured the electric current values during operation and analyzed to determine the quality of the indicators. The inspection items included the proper packaging, the electrical shorts, the LED lighting during charging, the LED lighting for charging failure, and the LED lighting when errors occur. We developed the system for the operators in the factory allowing them to approve the test results at the site. We developed the hardware, the control software, and the software to store the test results and the history of the products in the database. Serial numbers were given to the good quality products and the bar code labels were printed to trace the products afterwards. Through this work, we developed a system to inspect the electric parts in real time upon fabrication. We are planning to further improve our system to inspect the brightness of the indicator by adding the vision inspection in future.

A Maintenance Policy Determination of Dependent k-out-of-n:G System with Setup Cost (초기설치비를 고려한 의존적 k-out-of-n:G 시스템의 보전정책 결정)

  • 조성훈;안동규;성혁제;신현재
    • Journal of the Korean Society of Safety
    • /
    • v.14 no.2
    • /
    • pp.155-162
    • /
    • 1999
  • reliability from components reliability. In this case, it assumes that components failure is mutually independent, but it may not true in real systems. In this study, the mean cost per unit time is computed as the ratio of mean life to the mean cost. The mean life is obtained by the reliability function under power rule model. The mean cost is obtained by the mathematical model based on the inspection interval. A heuristic method is proposed to determine the optimal number of redundant units and the optimal inspection interval to minimize the mean cost per unit time. The assumptions of this study are as following : First, in the load-sharing k-out-of-n:G system, total loads are applied to the system and shared by the operating components. Secondly, the number of failed components affects the failure rate of surviving components as a function of the total load applied. Finally, the relation between the load and the failure rate of surviving components is set by the power rule model. For the practical application of the above methods, numerical examples are presented.

  • PDF

Development of a machine vision system for automotive part car seat frame inspection (자동차 부품 카시트 프레임 검사를 위한 머신비전 개발)

  • Andres, Nelson S.;Jang, Bong-Choon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.4
    • /
    • pp.1559-1564
    • /
    • 2011
  • This study presents the development of a machine vision inspection system(MVIS) purposely for car seat frames as an alternative for human inspection. The proposed MVIS is designed to meet the demands, features and specifications of car seat frame manufacturing companies in striving for increased throughput of better quality. This computer-based MVIS is designed to perform quality measures by detecting holes, nuts and welding spots on every car seat frame in real time. In this study, the NI Vision Builder software for Automatic Inspection was used as a solution in configuring the aimed quality measurements. The techniques for visual inspection are optimized through qualitative analysis and simulation of human tolerance on inspecting car seat frames. Furthermore, this study exemplifies the incorporation of the optimized vision inspection environment to the pre-inspection and post-inspection subsystems. The system built on this proposed MVIS for car seat frames has successfully found the possible detections.

A Development of Real-time Vibration Monitoring and Analysis System Linked to the Integrated Management System of Ministry of Public Safety and Security (국민안전처 통합관리시스템 연계 가능한 시설물 진동 감지 및 분석 시스템 개발)

  • Lim, Ji-Hoon;Jung, Jin-Woo;Moon, Dae-Joong;Choi, Dong-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.130-139
    • /
    • 2016
  • A frequency of earthquake occurrence in the Republic of Korea is increasing over the past few decades. In this situation, an importance of earthquake prevention comes to the fore because the earthquake does damage to structures and causes severe damage of human life. For the earthquake prevention, a real-time vibration measurement for structures is important. As an example, the United States of America and Japan have already been monitoring real-time earthquake acceleration for the important structures and the measured acceleration data has been managed by forming database. This database could be used for revising the seismic design specifications or predicting the damage caused by earthquake. In Korea, Earthquake Recovery Plans Act and Enforcement Regulations are revised and declared lately. Ministry of Public Safety and Security is constructing a integrated management system for the measured earthquake acceleration data. The purpose of this research is to develop a real-time vibration monitoring and analysis system for structures which links to the integrated management system. The developed system contains not only a monitoring function to show real-time acceleration data but also an analysis system to perform fast fourier transform, to obtain natural frequency and earthquake magnitude, to show response spectrum and power spectrum, and to evaluate structural health. Additionally, this system is designed to be able to link to the integrated management system of Ministry of Public Safety and Security. It is concluded that the developed system can be useful to build a safety management network, minimize maintenance cost of structures, and prevention of the structural damage due to earthquake.

Real-time Feedback Vibration Control of Structures Using Wireless Acceleration Sensor System - System Design and Basic Performance Evaluation - (무선 가속도센서 시스템을 이용한 건축물의 실시간 피드백 진동제어 - 시스템 구축 및 기초성능 평가 -)

  • Jeon, Joon Ryong;Park, Ki Tae;Lee, Chin Ok;Heo, Gwang Hee;Lee, Woo Sang
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.2
    • /
    • pp.21-32
    • /
    • 2013
  • This is a preliminary study for the real-time feedback vibration control of building structures. The study developed a wireless acceleration sensor system based on authentic technology capacities, to integrate with the Prototype AMD system and ultimately construct the feedback vibration control system. These systems were used to evaluate the basic performance levels of the control systems within model building structures. For this purpose, the study first developed a wireless acceleration sensor unit that integrates an MEMS sensor device and bluetooth communication module. Also, the study developed an operating program that enables control output based on real-time acceleration response measurement and control law. Furthermore, the Prototype AMD and motor driver system were constructed to be maneuvered by the AC servo-motor. Eventually, all these compositions were used to evaluate the real-time feedback vibration control system of a 2-story model building, and qualitatively measure the extent of vibrational reduction of the target structure within the laboratory validation tests. As a result of the tests, there was a definite vibrational reduction effect within the laboratory validation tests. As a result of the tests, there was a definite vibrational reduction effect within 1st and 2nd resonance frequency as well as the random frequency of the model building structure. Ultimately, this study confirmed the potential of its wireless acceleration sensor system and AMD system as an effective tool that can be applied to the active vibration control of other structures.

Wavelet Analysis to Real-Time Fabric Defects Detection in Weaving processes

  • Kim, Sung-Shin;Bae, Hyeon;Jung, Jae-Ryong;Vachtsevanos, George J.
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.2 no.1
    • /
    • pp.89-93
    • /
    • 2002
  • This paper introduces a vision-based on-line fabric inspection methodology of woven textile fabrics. Current procedure for determination of fabric defects in the textile industry is performed by human in the off-line stage. The advantage of the on-line inspection system is not only defect detection and identification, but also 벼ality improvement by a feedback control loop to adjust set-points. The proposed inspection system consists of hardware and software components. The hardware components consist of CCD array cameras, a frame grabber and appropriate illumination. The software routines capitalize upon vertical and horizontal scanning algorithms characteristic of a particular deflect. The signal to noise ratio (SNR) calculation based on the results of the wavelet transform is performed to measure any deflects. The defect declaration is carried out employing SNR and scanning methods. Test results from different types of defect and different style of fabric demonstrate the effectiveness of the proposed inspection system.

Implementation of Vision System for the Defect Inspection of Color Polyethylene (칼라 팔레트의 불량 검사를 위한 비전 시스템 구현)

  • 김경민;강종수;박중조;송명현
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2001.10a
    • /
    • pp.587-591
    • /
    • 2001
  • This paper deals with inspect algorithm using visual system. One of the major problems that arise during polymer production is the estimation of the noise of the color product.(bad pallets) An erroneous output can cause a lot of losses (production and financial losses). Therefore new methods for real-time inspection of the noise are demanded. For this reason, we have presented a development of vision system algorithm for the defect inspection of PE color pallets. First of all, in order to detect the edge of object, the differential filter is used. And we apply to the labelling algorithm for feature extraction. This algorithm is designed for the defect inspection of pallets. The labelling algorithm permits to separate all of the connected components appearing on the pallets. Labelling the connected regions of a image is a fundamental computation in image analysis and machine vision, with a large number of application. Also, we suggested vision processing program in window environment. Simulations and experimental results demonstrate the performance of the proposal algorithm.

  • PDF

Development of a structural inspection system with marking damage information at onsite based on an augmented reality technique

  • Junyeon Chung;Kiyoung Kim;Hoon Sohn
    • Smart Structures and Systems
    • /
    • v.31 no.6
    • /
    • pp.573-583
    • /
    • 2023
  • Although unmanned aerial vehicles have been used to overcome the limited accessibility of human-based visual inspection, unresolved issues still remain. Onsite inspectors face difficulty finding previously detected damage locations and tracking their status onsite. For example, an inspector still marks the damage location on a target structure with chalk or drawings while comparing the current status of existing damages to their previous status, as documented onsite. In this study, an augmented-reality-based structural inspection system with onsite damage information marking was developed to enhance the convenience of inspectors. The developed system detects structural damage, creates a holographic marker with damage information on the actual physical damage, and displays the marker onsite via an augmented reality headset. Because inspectors can view a marker with damage information in real time on the display, they can easily identify where the previous damage has occurred and whether the size of the damage is increasing. The performance of the developed system was validated through a field test, demonstrating that the system can enhance convenience by accelerating the inspector's essential tasks such as detecting damages, measuring their size, manually recording their information, and locating previous damages.

Proposal for guided missile actuator device inspection using data acquisition device (데이터 수집 장치를 이용한 유도탄 구동장치 점검 제안)

  • Eui-Jae Jung;Tack-Keun Oh;Jung-Min Lee;Pil-joong Yoo
    • Journal of Advanced Navigation Technology
    • /
    • v.27 no.4
    • /
    • pp.423-428
    • /
    • 2023
  • In the missile actuator system, the time and position of the wings of the drive device are very important factors in the initial maneuver of the missile, and therefore, the missile actuator device must be inspected while ensuring the accuracy and real-time of motion collection data of the actuator. In this study, the difference between the design and implementation method for checking the existing actuator device and the design implementation method of the actuator device through the DAQ(Data Acquisition) device is compared, and the difference in data collection amount and real-time data collection performance is compared and tested, and the data shown through actual tests are compared. is converted into a graph, the actuator waveform is compared and analyzed, and based on the analyzed data, DAQ device inspection configuration that guarantees real-time response speed and stability during inspection of existing actuators and DAQ devices is proposed.

A Study on Design of Real-time Big Data Collection and Analysis System based on OPC-UA for Smart Manufacturing of Machine Working

  • Kim, Jaepyo;Kim, Youngjoo;Kim, Seungcheon
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.4
    • /
    • pp.121-128
    • /
    • 2021
  • In order to design a real time big data collection and analysis system of manufacturing data in a smart factory, it is important to establish an appropriate wired/wireless communication system and protocol. This paper introduces the latest communication protocol, OPC-UA (Open Platform Communication Unified Architecture) based client/server function, applied user interface technology to configure a network for real-time data collection through IoT Integration. Then, Database is designed in MES (Manufacturing Execution System) based on the analysis table that reflects the user's requirements among the data extracted from the new cutting process automation process, bush inner diameter indentation measurement system and tool monitoring/inspection system. In summary, big data analysis system introduced in this paper performs SPC (statistical Process Control) analysis and visualization analysis with interface of OPC-UA-based wired/wireless communication. Through AI learning modeling with XGBoost (eXtream Gradient Boosting) and LR (Linear Regression) algorithm, quality and visualization analysis is carried out the storage and connection to the cloud.