• Title/Summary/Keyword: Real-time hybrid test

Search Result 85, Processing Time 0.031 seconds

Real-time Hybrid Testing a Building Structure Equipped with Full-scale MR dampers and Application of Semi-active Control Algorithms (대형 MR감쇠기가 설치된 건축구조물의 실시간 하이브리드 실험 및 준능동 알고리즘 적용)

  • Park, Eun-Churn;Lee, Sung-Kyung;Lee, Heon-Jae;Moon, Suk-Jun;Jung, Hyung-Jo;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.5
    • /
    • pp.465-474
    • /
    • 2008
  • The real-time hybrid testing method(RT-HYTEM) is a structural testing technique in which the numerical integration of the equation of motion for a numerical substructure and the physical testing for an experimental substructure are performed simultaneously in real-time. This study presents the quantitative evaluation of the seismic performance of a building structure installed with an passive and semi-active MR damper by using RT-HYTEM. The building model that was identified from the force-vibration testing results of a real-scaled 5-story building is used as the numerical substructure, and an MR damper corresponding to an experimental substructure is physically tested by using the universal testing machine(UTM). The RT-HYTEM implemented in this study is validated because the real-time hybrid testing results obtained by application of sinusoidal and earthquake excitations and the corresponding analytical results obtained by using the Bouc-Wen model as the control force of the MR damper respect to input currents were in good agreement. Also for preliminary study, some semi-active control algorithms were applied to the MR damper in order to control the structural responses optimally. Comparing between the test results of semi-active control using RT-HYTEM and numerical analysis results show that the RT-HYTEM is more resonable than numerical analysis to evaluate the performance of semi-active control algorithms.

Design and Performance Analysis of Real-Time Hybrid Position Tracking Service System using IEEE 802.15.4/4a in the Multi-Floor Building (복합환경에서 IEEE 802.15.4/4a를 이용한 하이브리드 실시간 위치추적 서비스 시스템 설계 및 성능분석)

  • Kim, Myung-Hwan;Chung, Yeong-Jee
    • Journal of Information Technology Services
    • /
    • v.10 no.1
    • /
    • pp.105-116
    • /
    • 2011
  • With recent spotlight on the, uniquitous computing technology, the need for object of indentification and location infrastructure has increased. Such GPS technolgy must utilize IEEE 802.15.4 Zigbee used for existing wireless sensor network infra as a basice element for user's context-awareness in a uniquitous environement, for effectiveness.Such real-time GPS service is provided in the internal environment where the user would actually are and most high-rise buildlings apply. Underthe assumption, the real-time GPS technology is seperated by each floor, and signals do not get transmitted to other floors, the application on one floor within the high-rise buildling was conducted. This study intends to suggest a floor detection algorithm using IEE 802.15.3/Zigbee's RSSI which supports the accuracy within a couple of meters for the user's the movement between the floors in high-rise buildings in a complex environment. It proposes an floor detection algorithm using IEEE 802.15.4/Zigbee's RSSI which provides accuracy within a radius of few meters for the users movement between the floors for real-time location tracking within high-rise building in a cmoplex environment. Furthermore, for more accurate real-time location tracking, it suggests an algorithm for real-time location tracking using IEEE 802.15.4a/Zigbee's CSS technology based on triangulation. Based on the suggested algorithm, it designs a hybrid real-time location tracking service system in a high-rise buildling and test its functions.

Design of a Rule-Based Solution Based on MFC for Inspection of the Hybrid Electronic Circuit Board (MFC 기반 하이브리드 전자보오드 검사를 위한 규칙기반 솔루션 설계)

  • Ko Yun-Seok
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.9
    • /
    • pp.531-538
    • /
    • 2005
  • This paper proposes an expert system which is able to enhance the accuracy and productivity by determining the test strategy based on heuristic rules for test of the hybrid electronic circuit board producted massively in production line. The test heuristic rules are obtained from test system designer, test experts and experimental results. The guarding method separating the tested device with circumference circuit of the device is adopted to enhance the accuracy of measurements in the test of analog devices. This guarding method can reduce the error occurring due to the voltage drop in both the signal input line and the measuring line by utilizing heuristic rules considering the device impedance and the parallel impedance. Also, PSA(Parallel Signature Analysis) technique Is applied for test of the digital devices and circuits. In the PSA technique, the real-time test of the high integrated device is possible by minimizing the test time forcing n bit output stream from the tested device to LFSR continuously. It is implemented in Visual C++ computer language for the purpose of the implementation of the inference engine using the dynamic memory allocation technique, the interface with the electronic circuit database and the hardware direct control. Finally, the effectiveness of the builded expert system is proved by simulating the several faults occurring in the mounting process the electronic devices to the surface of PCB for a typical hybrid electronic board and by identifying the results.

Vibration Control of a Building Structure with a Tuned Liquid Damper Using Real-Time Hybrid Experimental Method (실시간 하이브리드 실험법을 이용한 동조액체댐퍼가 설치된 건물의 진동제어)

  • Lee Sung-Kyung;Lee Sang-Hyun;Min Kyung-Won;park Eun-Churn;Woo Sung-Sik;Chung Lan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.256-263
    • /
    • 2006
  • In this paper, an experimental hybrid method, which implements the earthquake response control of a building structure with a TLD(Tuned Liquid Damper) by using only a TLD as an experimental part, is proposed and is experimentally verified through a shaking table test. In the proposed methodology, the whole building structure with a TLD is divided into the upper TLD and the lower structural parts as experimental and numerical substructures, respectively. At the moment, the control force acting between their interface is measured from the experimental TLD with shear-type load-cell which is mounted on shaking table. Shaking table vibrates the upper experimental TLD with the response calculated from the numerical substructure, which is subjected to the excitations of the measured interface control force at its top story and an earthquake input at its base. The experimental results show that the conventional method, in which both a TLD and a building structure model are physically manufactured and are tested, can be replaced by the proposed methodology with a simple experimental installation and a good accuracy for evaluating the control performance of a TLD.

  • PDF

A Real time Simulation for Performance Analysis of Flight Control System (비행체 제어장치의 성능 해석을 위한 실시간 시뮬레이션)

  • 곽병철;박양배
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.35 no.10
    • /
    • pp.458-464
    • /
    • 1986
  • This paper introduces a method for design verification and performance evaluation of flight control system. The method is a real time hardware in the loop simulation using the hybrid computer and motion table facility. As a typical illustration, a roll control system of flight vehicle is applied. The simulation validity is demonstrated by comparing hardware test results with analog simulation results.

  • PDF

Performance Evaluation of Tuned Liquid Mass Damper for Reducing Bi-directional Responses of a Building Structure (건축구조물의 2방향 진동제어를 위한 TLMD 제어성능평가)

  • Heo, Jae-Sung;Lee, Sung-Kyung;Park, Eun-Churn;Lee, Sang-Hyun;Kim, Hong-Jin;Jo, Ji-Seong;Cho, Bong-Ho;Min, Kyung-Won
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.432-441
    • /
    • 2008
  • In this study, the control performance of a Tuned Liquid Mass Damper(TLMD) manufactured to reduce the orthogonal bi-directional responses of building structures was experimentally evaluated. the TLMD using only one control device reduce bi-directional responses of building structures by making the TLMD behave as TMD and TLCD to the strong and weak axial direction of building structures. first, the control performance was evaluated by forcing sinusoidal waves to a test model that the TLMD is installed on the scale-downed building structure. Second, the real-time hybrid shaking table test was performed to evaluate the performance of the vibration control system made up of numerical part as a scale-downed building structural model and a physical experimental part as a TLMD. the superiority of bi-directional vibration control performance of the manufactured TLMD was verified by comparing the uncontrolled and controlled results of these tests.

  • PDF

Real-time hybrid simulation of a multi-story wood shear wall with first-story experimental substructure incorporating a rate-dependent seismic energy dissipation device

  • Shao, Xiaoyun;van de Lindt, John;Bahmani, Pouria;Pang, Weichiang;Ziaei, Ershad;Symans, Michael;Tian, Jingjing;Dao, Thang
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1031-1054
    • /
    • 2014
  • Real-time hybrid simulation (RTHS) of a stacked wood shear wall retrofitted with a rate-dependent seismic energy dissipation device (viscous damper) was conducted at the newly constructed Structural Engineering Laboratory at the University of Alabama. This paper describes the implementation process of the RTHS focusing on the controller scheme development. An incremental approach was adopted starting from a controller for the conventional slow pseudodynamic hybrid simulation and evolving to the one applicable for RTHS. Both benchmark-scale and full-scale tests are discussed to provide a roadmap for future RTHS implementation at different laboratories and/or on different structural systems. The developed RTHS controller was applied to study the effect of a rate-dependent energy dissipation device on the seismic performance of a multi-story wood shear wall system. The test specimen, setup, program and results are presented with emphasis given to inter-story drift response. At 100% DBE the RTHS showed that the multi-story shear wall with the damper had 32% less inter-story drift and was noticeably less damaged than its un-damped specimen counterpart.

Modeling and Analysis of the Speed Profiles for the Gasoline Hybrid Vehicle in the Real Driving Emission Test (가솔린 하이브리드 차량의 실도로 배기규제 평가를 위한 구간 주행 속도 특성 분석 및 해석 모델 개발 연구)

  • Seongsu Kim;Minho Lee;Kyoungha Noh;Junghwan Kim
    • Journal of ILASS-Korea
    • /
    • v.28 no.4
    • /
    • pp.184-190
    • /
    • 2023
  • The European Union has instituted a new emission standard protocol that necessitates real-time measurements from vehicles on actual roads. The adequate development of routes for real driving emissions (RDE) mandates substantial resources, encompassing both vehicles and a portable emission measurement system (PEMS). In this study, a simulation tool was utilized to predict the vehicle speed traversing the routes developed for the RDE measurements. Initially, the vehicle powertrain system was modeled for both a gasoline hybrid vehicle and a gasoline engine-only vehicle. Subsequently, the speed profile for the specified vehicle was constructed based on the RDE route developed for the EURO-6 standard. Finally, the predicted vehicle speed profiles for highway and urban routes were assessed utilizing the actual driving data. The driving model predicted more consistency in the vehicle speed at each driving section. Meanwhile, the human driver tended to accelerate further, and then decelerate in each section, instead of cruising at a predicted section speed.

Analysis of Agricultural Working Load Experiments for Reduction Gear Ratio Design of an Electric Tractor Powertrain (전기구동 파워트레인의 감속기어비 설계를 위한 농용 트랙터의 작업 부하 분석)

  • Kim, Jung-Yun;Park, Yeong-Il
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.20 no.5
    • /
    • pp.138-144
    • /
    • 2012
  • Recent environmental issues such as exhaust gas and greenhouse effect make the agricultural machinery market takes into account the hybrid and electric propulsion technology used in automotive engineering. Generally the agricultural machinery, particularly an agricultural tractor, needs large load capacity and long continuous operating time comparing with conventional vehicles. In case of a pure electric tractor, it is necessary for considering large capacity batteries and long charging time. Therefore we take an AER extended PHEV (All Electric Range extended Plug-in Hybrid Electric Vehicle) power transmission system in developing an electric tractor in this study. First we propose a PHEV powertrain structure in order to substitute the conventional diesel engine equipped tractor. And we performed the road tests using a conventional mechanical tractor with various load conditions, which were classified and statistically treated real agricultural works. The test results were analysed with respect to the power characteristics of the power source. Finally using the test result, we designed two-stepped reduction gear ratios in the proposed an electric tractor powertrain for carrying out typical agricultural works.

Hybrid Method using Frame Selection and Weighting Model Rank to improve Performance of Real-time Text-Independent Speaker Recognition System based on GMM (GMM 기반 실시간 문맥독립화자식별시스템의 성능향상을 위한 프레임선택 및 가중치를 이용한 Hybrid 방법)

  • 김민정;석수영;김광수;정호열;정현열
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.5
    • /
    • pp.512-522
    • /
    • 2002
  • In this paper, we propose a hybrid method which is mixed with frame selection and weighting model rank method, based on GMM(gaussian mixture model), for real-time text-independent speaker recognition system. In the system, maximum likelihood estimation was used for GMM parameter optimization, and maximum likelihood was used for recognition basically Proposed hybrid method has two steps. First, likelihood score was calculated with speaker models and test data at frame level, and the difference is calculated between the biggest likelihood value and second. And then, the frame is selected if the difference is bigger than threshold. The second, instead of calculated likelihood, weighting value is used for calculating total score at each selected frame. Cepstrum coefficient and regressive coefficient were used as feature parameters, and the database for test and training consists of several data which are collected at different time, and data for experience are selected randomly In experiments, we applied each method to baseline system, and tested. In speaker recognition experiments, proposed hybrid method has an average of 4% higher recognition accuracy than frame selection method and 1% higher than W method, implying the effectiveness of it.

  • PDF