• Title/Summary/Keyword: Real-time compression

Search Result 366, Processing Time 0.025 seconds

A Development of JPEG-LS Platform for Mirco Display Environment in AR/VR Device. (AR/VR 마이크로 디스플레이 환경을 고려한 JPEG-LS 플랫폼 개발)

  • Park, Hyun-Moon;Jang, Young-Jong;Kim, Byung-Soo;Hwang, Tae-Ho
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.2
    • /
    • pp.417-424
    • /
    • 2019
  • This paper presents the design of a JPEG-LS codec for lossless image compression from AR/VR device. The proposed JPEG-LS(: LosSless) codec is mainly composed of a context modeling block, a context update block, a pixel prediction block, a prediction error coding block, a data packetizer block, and a memory block. All operations are organized in a fully pipelined architecture for real time image processing and the LOCO-I compression algorithm using improved 2D approach to compliant with the SBT coding. Compared with a similar study in JPEG-LS, the Block-RAM size of proposed STB-FLC architecture is reduced to 1/3 compact and the parallel design of the predication block could improved the processing speed.

Design of FPGA-based Signal Processing of EWRG for Localized Heavy Rainfall Observation (국지성 호우 관측을 위한 FPGA 기반의 전파강수계 신호처리 설계)

  • Choi, Jeong-Ho;Lee, Bae-Kyu;Park, Hyeong-Sam;Park, Jeong-Min;Lim, Sang-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.9
    • /
    • pp.1215-1223
    • /
    • 2020
  • Recently, the number of natural disasters caused by inclement weather conditions such as localized heavy rainfall, Typhoon, etc. is increasing in Korea, which requires relevant prevention and water management measures. Rain gauges installed on the ground have strengths in continuously·directly measures ground precipitation but cannot provide accurate information on spatial precipitation distribution in the areas without the rain gauges. The present research has designed and developed an electromagnetic-based multi-purpose precipitation gauge(EWRG, Electromagnetic Wave Rain Gauge) that can measure rainfall at the real time, by overcoming spatial representativeness. In this paper, we propose an FPGA-based signal processing design method for EWRG. The signal processing of the EWRG was largely designed by calculating the ADC and DDC of the LFM waveform, pulse compression, correlation coefficient and estimating the precipitation parameter. In this study, the LFM waveform and pulse compressed signal were theoretically analyzed.

Implementation of FPGA-based Accelerator for GRU Inference with Structured Compression (구조적 압축을 통한 FPGA 기반 GRU 추론 가속기 설계)

  • Chae, Byeong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.850-858
    • /
    • 2022
  • To deploy Gate Recurrent Units (GRU) on resource-constrained embedded devices, this paper presents a reconfigurable FPGA-based GRU accelerator that enables structured compression. Firstly, a dense GRU model is significantly reduced in size by hybrid quantization and structured top-k pruning. Secondly, the energy consumption on external memory access is greatly reduced by the proposed reuse computing pattern. Finally, the accelerator can handle a structured sparse model that benefits from the algorithm-hardware co-design workflows. Moreover, inference tasks can be flexibly performed using all functional dimensions, sequence length, and number of layers. Implemented on the Intel DE1-SoC FPGA, the proposed accelerator achieves 45.01 GOPs in a structured sparse GRU network without batching. Compared to the implementation of CPU and GPU, low-cost FPGA accelerator achieves 57 and 30x improvements in latency, 300 and 23.44x improvements in energy efficiency, respectively. Thus, the proposed accelerator is utilized as an early study of real-time embedded applications, demonstrating the potential for further development in the future.

An Efficient Real-Time Image Reconstruction Scheme using Network m Multiple View and Multiple Cluster Environments (다시점 및 다중클러스터 환경에서 네트워크를 이용한 효율적인 실시간 영상 합성 기법)

  • You, Kang-Soo;Lim, Eun-Cheon;Sim, Chun-Bo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2251-2259
    • /
    • 2009
  • We propose an algorithm and system which generates 3D stereo image by composition of 2D image from 4 multiple clusters which 1 cluster was composed of 4 multiple cameras based on network. Proposed Schemes have a network-based client-server architecture for load balancing of system caused to process a large amounts of data with real-time as well as multiple cluster environments. In addition, we make use of JPEG compression and RAM disk method for better performance. Our scheme first converts input images from 4 channel, 16 cameras to binary image. And then we generate 3D stereo images after applying edge detection algorithm such as Sobel algorithm and Prewiit algorithm used to get disparities from images of 16 multiple cameras. With respect of performance results, the proposed scheme takes about 0.05 sec. to transfer image from client to server as well as 0.84 to generate 3D stereo images after composing 2D images from 16 multiple cameras. We finally confirm that our scheme is efficient to generate 3D stereo images in multiple view and multiple clusters environments with real-time.

A Real-time Motion Object Detection based on Neighbor Foreground Pixel Propagation Algorithm (주변 전경 픽셀 전파 알고리즘 기반 실시간 이동 객체 검출)

  • Nguyen, Thanh Binh;Chung, Sun-Tae
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.1
    • /
    • pp.9-16
    • /
    • 2010
  • Moving object detection is to detect foreground object different from background scene in a new incoming image frame and is an essential ingredient process in some image processing applications such as intelligent visual surveillance, HCI, object-based video compression and etc. Most of previous object detection algorithms are still computationally heavy so that it is difficult to develop real-time multi-channel moving object detection in a workstation or even one-channel real-time moving object detection in an embedded system using them. Foreground mask correction necessary for a more precise object detection is usually accomplished using morphological operations like opening and closing. Morphological operations are not computationally cheap and moreover, they are difficult to be rendered to run simultaneously with the subsequent connected component labeling routine since they need quite different type of processing from what the connected component labeling does. In this paper, we first devise a fast and precise foreground mask correction algorithm, "Neighbor Foreground Pixel Propagation (NFPP)" which utilizes neighbor pixel checking employed in the connected component labeling. Next, we propose a novel moving object detection method based on the devised foreground mask correction algorithm, NFPP where the connected component labeling routine can be executed simultaneously with the foreground mask correction. Through experiments, it is verified that the proposed moving object detection method shows more precise object detection and more than 4 times faster processing speed for a image frame and videos in the given the experiments than the previous moving object detection method using morphological operations.

Band Selection Algorithm based on Expected Value for Pixel Classification (픽셀 분류를 위한 기댓값 기반 밴드 선택 알고리즘)

  • Chang, Duhyeuk;Jung, Byeonghyeon;Heo, Junyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.107-112
    • /
    • 2022
  • In an embedded system such as a drone, it is difficult to store, transfer and analyze the entire hyper-spectral image to a server in real time because it takes a lot of power and time. Therefore, the hyper-spectral image data is transmitted to the server through dimension reduction or compression pre-processing. Feature selection method are used to send only the bands for analysis purpose, and these algorithms usually take a lot of processing time depending on the size of the image, even though the efficiency is high. In this paper, by improving the temporal disadvantage of the band selection algorithm, the time taken 24 hours was reduced to around 60-180 seconds based on the 40000*682 image resolution of 8GB data, and the use of 7.6GB RAM was significantly reduced to 2.3GB using 45 out of 150 bands. However, in terms of pixel classification performance, more than 98% of analysis results were derived similarly to the previous one.

An Efficient Decoding Technique for Huffman Code Using Tilted Huffman Trees (한쪽으로 기운 허프만 트리에서의 효율적인 허프만 복호 기법)

  • 김병한;임종석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.18 no.12
    • /
    • pp.1956-1969
    • /
    • 1993
  • The tilted Huffman trees are used in JPEG and MPEG image compression standards for Huffman coding. In this paper we propose a new decoding technique for Huffman code, symbols are decoded by repeatedly obtaining the predefined number of consecutive bits and accessing symbol tables based on the obtaining bits. We show that the size of the symbol table can be small if the Huffman tree is tilted. Specifically, we show an upper bound on the size in this paper. Since the proposed method processes multiple bits at each clock, it can be used for real time processing. We show such evaluation results.

  • PDF

Enhanced Image Encryption Scheme using Context Adaptive Variable Length Coding (적응 산술 부호화를 이용한 고화질 영상 암호화 전략)

  • Shim, Gab-Yong;Lee, Malrey
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.13 no.3
    • /
    • pp.119-126
    • /
    • 2013
  • Achieve real-time encryption and video data transcoding, current video encryption methods usually integrate encryption algorithm with video compression course. This paper is devoted to discussing the video encryption technology, by encrypting to avoid unauthorized person getting video data. This paper studied the H.264 entropy coding and proposed of CAVLC video encryption scheme which is combined with the process of entropy coding of H.264 CAVLC encryption scheme. Three encryption levels are proposed. In addition, a scrambling method is also proposed which makes the encrypted frames more robust in anti crack. This method showed more robust video data encryption function and compressive rate.

Reduction of Quantization Noise in Block-Based Video Coding Using Wavelet Transform (블록기반 동영상 부호화에서의 웨이브렛 변환을 이용한 양자화 잡음 제거)

  • 문기웅;장익훈;김남철
    • Proceedings of the IEEK Conference
    • /
    • 2000.11d
    • /
    • pp.155-158
    • /
    • 2000
  • In this paper, the quantization noise in block-based video coding is analyzed, and a post-processing method based on the analysis is presented for reducing the quantization noise by using a wavelet transform(WT). In the proposed method, the quantization noise is considered as the sum of a blocking noise expressed as a deterministic profile and the random remainder noise. Each noise is removed in a viewpoint of image restoration using a 1-D WT, which yields a regularized differentiation. The blocking noise first is reduced by weakening the strength of each blocking noise component that appears as an impulse in the first scale wavelet domain. The impulse strength estimation is performed using median filter, quantization parameter(QP), and local activity. The remainder noise, which is considered as a white noise at non-edge pixels, then is reduced by soft-thresholding. The experimental results show that the proposed method yields better performance in terms if subjective quality as well as PSNR performance over VM post-filter in MPEG-4 for all test sequences of various compression ratios. We also present a fast post-processing in spatial domain equivalent to that in wavelet domain for real-time application.

  • PDF

New In-Orbit Pixel Correction Method

  • Kim Youngsun;Kong Jong-Pil;Heo Haeng-Pal;Park Jong-Euk;Chang Young-Jun
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.604-607
    • /
    • 2005
  • All CCD pixels do not react uniformly even if the light of same radiance enters into the camera. This comes from the different camera optical characteristics, the read-out characteristics, the pixel own characteristics and so on. Usually, the image data of satellite camera can be corrected by the various image-processing methods in the ground. However, sometimes, the in-orbit correction is needed to get the higher quality image. Especially high frequency pixel correction in the middle of in-orbit mission is needed because the in-orbit data compression with the high frequency loss is essential to transmit many data in real time due to the limited RF bandwidth. In this case, this high frequency correction can prevent have to have any unnecessary high frequency loss. This in-orbit correction can be done by the specific correction table, which consists of the gain and the offset correction value for each pixel. So, it is very important to get more accurate correction table for good correction results. This paper shows the new algorithm to get accurate pixel correction table. This algorithm shall be verified theoretically and also verified with the various simulation and the test results.

  • PDF