• Title/Summary/Keyword: Real-time cardiac MRI

Search Result 9, Processing Time 0.027 seconds

Fast Real-Time Cardiac MRI: a Review of Current Techniques and Future Directions

  • Wang, Xiaoqing;Uecker, Martin;Feng, Li
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.252-265
    • /
    • 2021
  • Cardiac magnetic resonance imaging (MRI) serves as a clinical gold-standard non-invasive imaging technique for the assessment of global and regional cardiac function. Conventional cardiac MRI is limited by the long acquisition time, the need for ECG gating and/or long breathhold, and insufficient spatiotemporal resolution. Real-time cardiac cine MRI refers to high spatiotemporal cardiac imaging using data acquired continuously without synchronization or binning, and therefore of potential interest in overcoming the limitations of conventional cardiac MRI. Novel acquisition and reconstruction techniques must be employed to facilitate real-time cardiac MRI. The goal of this study is to discuss methods that have been developed for real-time cardiac MRI. In particular, we classified existing techniques into two categories based on the use of non-iterative and iterative reconstruction. In addition, we present several research trends in this direction, including deep learning-based image reconstruction and other advanced real-time cardiac MRI strategies that reconstruct images acquired from real-time free-breathing techniques.

Retrospective Electrocardiography-Gated Real-Time Cardiac Cine MRI at 3T: Comparison with Conventional Segmented Cine MRI

  • Chen Cui;Gang Yin;Minjie Lu;Xiuyu Chen;Sainan Cheng;Lu Li;Weipeng Yan;Yanyan Song;Sanjay Prasad;Yan Zhang;Shihua Zhao
    • Korean Journal of Radiology
    • /
    • v.20 no.1
    • /
    • pp.114-125
    • /
    • 2019
  • Objective: Segmented cardiac cine magnetic resonance imaging (MRI) is the gold standard for cardiac ventricular volumetric assessment. In patients with difficulty in breath-holding or arrhythmia, this technique may generate images with inadequate quality for diagnosis. Real-time cardiac cine MRI has been developed to address this limitation. We aimed to assess the performance of retrospective electrocardiography-gated real-time cine MRI at 3T for left ventricular (LV) volume and mass measurement. Materials and Methods: Fifty-one patients were consecutively enrolled. A series of short-axis cine images covering the entire left ventricle using both segmented and real-time balanced steady-state free precession cardiac cine MRI were obtained. End-diastolic volume (EDV), end-systolic volume (ESV), stroke volume (SV), ejection fraction (EF), and LV mass were measured. The agreement and correlation of the parameters were assessed. Additionally, image quality was evaluated using European CMR Registry (Euro-CMR) score and structure visibility rating. Results: In patients without difficulty in breath-holding or arrhythmia, no significant difference was found in Euro-CMR score between the two techniques (0.3 ± 0.7 vs. 0.3 ± 0.5, p > 0.05). Good agreements and correlations were found between the techniques for measuring EDV, ESV, EF, SV, and LV mass. In patients with difficulty in breath-holding or arrhythmia, segmented cine MRI had a significant higher Euro-CMR score (2.3 ± 1.2 vs. 0.4 ± 0.5, p < 0.001). Conclusion: Real-time cine MRI at 3T allowed the assessment of LV volume with high accuracy and showed a significantly better image quality compared to that of segmented cine MRI in patients with difficulty in breath-holding and arrhythmia.

Minimizing MR Gradient Artefacts on ECG Signals for Cardiac Gating based on an Adaptive Digital Filter (적응 디지털 필터 기반의 MRI Cardiac Gating을 위한 심전도 신호의 MR Gradient 잡음 최소화 방법)

  • Park, Ho-Dong;Jang, Bong-Ryeol;Lee, Kyoung-Joung
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.817-818
    • /
    • 2006
  • In Magnetic Resonance Imaging(MRI), the QRS complex of ECG is used as a trigger signal for MRI scan. But, gradient and RF(radio frequency) artifacts which are caused to static and dynamic field in MRI scanner cause interference in the ECG. Also, the signal shape of theses artifacts can be similar to the QRS-complex, causing possible misinterpretation during patient monitoring and false gating of the MRI. In case of using general FIR or IIR band-pass filters for minimizing the artifacts, artifact-reduction-ratio is not excellent. So, an adaptive real-time digital filter is proposed for reduction of noise by gradient and RF(radio frequency) artifacts. The proposed filter for MRI-Gating is based on the noise-canceller with NLMS(Normalized Least Mean Square) algorithm. The reference signals of the adaptive noise canceller are a combination of the noisy three channel ECG signals. In conclusions, the proposed method showed the acceptable quality of ECG signal with sufficient SNR for gating the MRI and possibility of real time implementation.

  • PDF

Multi-biological Signal-based Smart Trigger System for Cardiac MRI (다중 생체 신호를 이용한 심장 자기공명영상 스마트 트리거 시스템)

  • Yang, Young-Joong;Park, Jinho;Hong, Hye-Jin;Ahn, Chang-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.7
    • /
    • pp.945-949
    • /
    • 2014
  • In cardiac magnetic resonance imaging (CMRI), heart and respiratory motions are one of main obstacles in obtaining diagnostic quality of images. To synchronize CMRI to the physiological motions, ECG and respiratory gatings are commonly used. In this paper multi-biological signal (ECG, respiratory, and SPO2) based smart trigger system is proposed. By using multi-biological signal, the proposed system is robust to the induced noise such as eddy current when gradient pulsing is continuously applied during the examination. Digital conversion of the multi-biological signal makes the system flexible in implementing smart and intelligent algorithm to detect cardiac and respiratory motion and to reject arrhythmia of the heart. The digital data is used for real-time trigger, as well as signal display, and data storage which may be used for retrospective signal processing.

Cardiac Magnetic Resonance Imaging Using Multi-physiological Intelligent Trigger System (멀티 생체신호 동기 시스템을 이용한 심장자기공명영상)

  • Park, Jinho;Yoon, Jong-Hyun;Yang, Young-Joong;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.18 no.3
    • /
    • pp.244-252
    • /
    • 2014
  • Purpose : We proposed a multi-physiological signals based real-time intelligent triggering system(MITS) for Cardiac MRI. Induced noise of the system was analyzed. Materials and Methods: MITS makes cardiac MR imaging sequence synchronize to the cardiac motion using ECG, respiratory signal and second order derivative of $SPO_2$signal. Abnormal peaks due to arrhythmia or subject's motion are rejected using the average R-R intervals and R-peak values. Induced eddy currents by gradients switching in cardiac MR imaging are analyzed. The induced eddy currents were removed by hardware and software filters. Results: Cardiac MR images that synchronized to the cardiac and respiratory motion are acquired using MITS successfully without artifacts caused by induced eddy currents of gradient switching or subject's motion or arrhythmia. We showed that the second order derivative of the $SPO_2$ signal can be used as a complement to the ECG signals. Conclusion: The proposed system performs cardiac and respiratory gating with multi-physiological signals in real time. During the cardiac gating, induced noise caused by eddy currents is removed. False triggers due to subject's motion or arrhythmia are rejected. The cardiac MR imaging with free breathing is obtained using MITS.

Real-time Interactive Control of Magnetic Resonance Imaging System Using High-speed Digital Signal Processors (고속 DSP를 이용한 실시간 자기공명영상시스템 제어)

  • 안창범;김휴정;이흥규
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.5
    • /
    • pp.341-349
    • /
    • 2003
  • A real time interactive controller (spectrometer) for magnetic resonance imaging (MRI) system has been developed using high speed digital signal processors (DSP). The controller generates radio frequency (rf) waveforms and audio frequency gradient waveforms and controls multiple receivers for data acquisition. By employing DSPs having high computational power (e.g., TMS320C670l) real time generation of complicated gradient waveforms and interactive control of selection planes are possible, which are important features in real-time imaging of moving organs, e.g., cardiac imaging. The spectrometer was successfully implemented at a 1.5 Tesla whole body MRI system for clinical application. Performance of the spectrometer is verified by various experiments including high- speed imaging such as fast spin echo (FSE) and echo planar imaging (EPI). These high-speed imaging techniques reduce measurement time, however, usually intensify artifact if there is any systematic phase error or jitter in the synchronization between the transmitter, receiver, and gradients.

Biases in the Assessment of Left Ventricular Function by Compressed Sensing Cardiovascular Cine MRI

  • Yoon, Jong-Hyun;Kim, Pan-ki;Yang, Young-Joong;Park, Jinho;Choi, Byoung Wook;Ahn, Chang-Beom
    • Investigative Magnetic Resonance Imaging
    • /
    • v.23 no.2
    • /
    • pp.114-124
    • /
    • 2019
  • Purpose: We investigate biases in the assessments of left ventricular function (LVF), by compressed sensing (CS)-cine magnetic resonance imaging (MRI). Materials and Methods: Cardiovascular cine images with short axis view, were obtained for 8 volunteers without CS. LVFs were assessed with subsampled data, with compression factors (CF) of 2, 3, 4, and 8. A semi-automatic segmentation program was used, for the assessment. The assessments by 3 CS methods (ITSC, FOCUSS, and view sharing (VS)), were compared to those without CS. Bland-Altman analysis and paired t-test were used, for comparison. In addition, real-time CS-cine imaging was also performed, with CF of 2, 3, 4, and 8 for the same volunteers. Assessments of LVF were similarly made, for CS data. A fixed compensation technique is suggested, to reduce the bias. Results: The assessment of LVF by CS-cine, includes bias and random noise. Bias appeared much larger than random noise. Median of end-diastolic volume (EDV) with CS-cine (ITSC or FOCUSS) appeared -1.4% to -7.1% smaller, compared to that of standard cine, depending on CF from (2 to 8). End-systolic volume (ESV) appeared +1.6% to +14.3% larger, stroke volume (SV), -2.4% to -16.4% smaller, and ejection fraction (EF), -1.1% to -9.2% smaller, with P < 0.05. Bias was reduced from -5.6% to -1.8% for EF, by compensation applied to real-time CS-cine (CF = 8). Conclusion: Loss of temporal resolution by adopting missing data from nearby cardiac frames, causes an underestimation for EDV, and an overestimation for ESV, resulting in underestimations for SV and EF. The bias is not random. Thus it should be removed or reduced for better diagnosis. A fixed compensation is suggested, to reduce bias in the assessment of LVF.

Design of MRI Spectrometer Using 1 Giga-FLOPS DSP (1-GFLOPS DSP를 이용한 자기공명영상 스펙트로미터 설계)

  • 김휴정;고광혁;이상철;정민영;장경섭;이동훈;이흥규;안창범
    • Investigative Magnetic Resonance Imaging
    • /
    • v.7 no.1
    • /
    • pp.12-21
    • /
    • 2003
  • Purpose : In order to overcome limitations in the existing conventional spectrometer, a new spectrometer with advanced functionalities is designed and implemented. Materials and Methods : We designed a spectrometer using the TMS320C6701 DSP capable of 1 giga floating point operations per second (GFLOPS). The spectrometer can generate continuously varying complicate gradient waveforms by real-time calculation, and select image plane interactively. The designed spectrometer is composed of two parts: one is DSP-based digital control part, and the other is analog part generating gradient and RF waveforms, and performing demodulation of the received RF signal. Each recover board can measure 4 channel FID signals simultaneously for parallel imaging, and provides fast reconstruction using the high speed DSP. Results : The developed spectrometer was installed on a 1.5 Tesla whole body MRI system, and performance was tested by various methods. The accurate phase control required in digital modulation and demodulation was tested, and multi-channel acquisition was examined with phase-array coil imaging. Superior image quality is obtained by the developed spectrometer compared to existing commercial spectrometer especially in the fast spin echo images. Conclusion : Interactive control of the selection planes and real-time generation of gradient waveforms are important functions required for advanced imaging such as spiral scan cardiac imaging. Multi-channel acquisition is also highly demanding for parallel imaging. In this paper a spectrometer having such functionalities is designed and developed using the TMS320C6701 DSP having 1 GFLOPS computational power. Accurate phase control was achieved by the digital modulation and demodulation techniques. Superior image qualities are obtained by the developed spectrometer for various imaging techniques including FSE, GE, and angiography compared to those obtained by the existing commercial spectrometer.

  • PDF

THE CURRENT STATUS OF BIOMEDICAL ENGINEERING IN THE USA

  • Webster, John G.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.27-47
    • /
    • 1992
  • Engineers have developed new instruments that aid in diagnosis and therapy Ultrasonic imaging has provided a nondamaging method of imaging internal organs. A complex transducer emits ultrasonic waves at many angles and reconstructs a map of internal anatomy and also velocities of blood in vessels. Fast computed tomography permits reconstruction of the 3-dimensional anatomy and perfusion of the heart at 20-Hz rates. Positron emission tomography uses certain isotopes that produce positrons that react with electrons to simultaneously emit two gamma rays in opposite directions. It locates the region of origin by using a ring of discrete scintillation detectors, each in electronic coincidence with an opposing detector. In magnetic resonance imaging, the patient is placed in a very strong magnetic field. The precessing of the hydrogen atoms is perturbed by an interrogating field to yield two-dimensional images of soft tissue having exceptional clarity. As an alternative to radiology image processing, film archiving, and retrieval, picture archiving and communication systems (PACS) are being implemented. Images from computed radiography, magnetic resonance imaging (MRI), nuclear medicine, and ultrasound are digitized, transmitted, and stored in computers for retrieval at distributed work stations. In electrical impedance tomography, electrodes are placed around the thorax. 50-kHz current is injected between two electrodes and voltages are measured on all other electrodes. A computer processes the data to yield an image of the resistivity of a 2-dimensional slice of the thorax. During fetal monitoring, a corkscrew electrode is screwed into the fetal scalp to measure the fetal electrocardiogram. Correlations with uterine contractions yield information on the status of the fetus during delivery To measure cardiac output by thermodilution, cold saline is injected into the right atrium. A thermistor in the right pulmonary artery yields temperature measurements, from which we can calculate cardiac output. In impedance cardiography, we measure the changes in electrical impedance as the heart ejects blood into the arteries. Motion artifacts are large, so signal averaging is useful during monitoring. An intraarterial blood gas monitoring system permits monitoring in real time. Light is sent down optical fibers inserted into the radial artery, where it is absorbed by dyes, which reemit the light at a different wavelength. The emitted light travels up optical fibers where an external instrument determines O2, CO2, and pH. Therapeutic devices include the electrosurgical unit. A high-frequency electric arc is drawn between the knife and the tissue. The arc cuts and the heat coagulates, thus preventing blood loss. Hyperthermia has demonstrated antitumor effects in patients in whom all conventional modes of therapy have failed. Methods of raising tumor temperature include focused ultrasound, radio-frequency power through needles, or microwaves. When the heart stops pumping, we use the defibrillator to restore normal pumping. A brief, high-current pulse through the heart synchronizes all cardiac fibers to restore normal rhythm. When the cardiac rhythm is too slow, we implant the cardiac pacemaker. An electrode within the heart stimulates the cardiac muscle to contract at the normal rate. When the cardiac valves are narrowed or leak, we implant an artificial valve. Silicone rubber and Teflon are used for biocompatibility. Artificial hearts powered by pneumatic hoses have been implanted in humans. However, the quality of life gradually degrades, and death ensues. When kidney stones develop, lithotripsy is used. A spark creates a pressure wave, which is focused on the stone and fragments it. The pieces pass out normally. When kidneys fail, the blood is cleansed during hemodialysis. Urea passes through a porous membrane to a dialysate bath to lower its concentration in the blood. The blind are able to read by scanning the Optacon with their fingertips. A camera scans letters and converts them to an array of vibrating pins. The deaf are able to hear using a cochlear implant. A microphone detects sound and divides it into frequency bands. 22 electrodes within the cochlea stimulate the acoustic the acoustic nerve to provide sound patterns. For those who have lost muscle function in the limbs, researchers are implanting electrodes to stimulate the muscle. Sensors in the legs and arms feed back signals to a computer that coordinates the stimulators to provide limb motion. For those with high spinal cord injury, a puff and sip switch can control a computer and permit the disabled person operate the computer and communicate with the outside world.

  • PDF