• Title/Summary/Keyword: Real-time analysis system

Search Result 3,102, Processing Time 0.032 seconds

Development of a Real-time Vehicle Driving Simulator

  • Kim, Hyun-Ju;Park, Min-Kyu;Lee, Min-Cheoul;You, Wan-Suk
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.51.2-51
    • /
    • 2001
  • A vehicle driving simulator is a virtual reality device which makes a human being feel as if the one drives a vehicle actually. The driving simulator is effectively used for studying interaction of a driver-vehicle and developing the vehicle system of new concepts. The driving simulator consists of a motion platform, a motion controller, a visual and audio system, a vehicle dynamic analysis system, a vehicle operation system and etc. The vehicle dynamic analysis system supervises overall operation of the simulator and also simulates dynamic motion of a multi-body vehicle model in real-time. In this paper, the main procedures to develop the driving simulator are classified by 4 parts. First, a vehicle motion platform and a motion controller, which generates realistic motion using a six degree of freedom Stewart platform driven hydraulically. Secondly, a visual system generates high fidelity visual scenes which are displayed on a screen ...

  • PDF

Calcium Ion Dynamics after Dexamethasone Treatment in Organotypic Cultured Hippocampal Slice

  • Chae, Hee-Jung;Kang, Tong-Ho;Park, Ji-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.9 no.6
    • /
    • pp.363-369
    • /
    • 2005
  • It is imperative to analyse brain injuries directly in real time, so as to find effective therapeutic compounds to protect brain injuries by stress. We established a system which could elucidate the real time $Ca^{2+}$ dynamics in an organotypic cultured hippocampal slice by the insults of artificial stress hormone, dexamethasone. The real time $Ca^{2+}$ dynamics could continuously be detected in cornus ammonis 3 (CA3) of the organotypic hippocampus for 8 hours under confocal microscopy. When dexamethasone concentration was increased, the $Ca^{2+}$ was also increased in a dose dependent manner at $1{\sim}100{\mu}M$ concentrations. Moreover, when the organotypic cultured hippocampal slice was treated with a glutamate receptor antagonist together with dexamethasone, the real time $Ca^{2+}$ dynamics were decreased. Furthermore, we confirmed by PI uptake study that glutamate receptor antagonist reduced the hippocampal tissue damage caused by dexamethasone treatment. Therefore, our new calcium ion dynamics system in organotypic cultured hippocampal slice after dexamethasone treatment could provide real time analysis method for investigation of brain injuries by stress.

Study of Smart Vehicle Seat for Real-time Driver Posture Monitoring (운전자 자세 실시간 모니터링이 가능한 스마트 자동차 시트 연구)

  • Shim, Kwangmin;Seo, Jung Hwan
    • Journal of Auto-vehicle Safety Association
    • /
    • v.12 no.1
    • /
    • pp.52-61
    • /
    • 2020
  • In recent years, the increasing interest in health-care requires the industrial products to be well-designed ergonomically. In the commercial vehicle industry, several researchers have demonstrated the driver's posture has great effect on the orthopedic desease such as fatigue, back pain, scoliosis, and so on. However, the existing sensor systems developed for measuring the driver posture in real time have suffered from inaccuracy and low reliability issues. Here, we suggest our smart vehicle seat system capable of real-time driver posture monitoring by using the air bag sensor package with high sensitivity and reliability. The ergonomic numerical model which can evaluate a driver's posture has been developed on the basis of the human body segmentation method followed by simulation-based validation. Our experimental analysis of obtained pressure distribution of a vehicle seat under the different driver's postures revealed our smart vehicle system successfully achieved the driver's real-time posture data in great agreement with our numerical model.

Near-Real-Time Ship Tracking using GPS Precise Point Positioning (GPS 정밀단독측위 기법을 이용한 준실시간 선박 위치추적)

  • Ha, Ji-Hyun;Heo, Moon-Beom;Nam, Gi-Wook
    • Journal of Advanced Navigation Technology
    • /
    • v.14 no.6
    • /
    • pp.783-790
    • /
    • 2010
  • For safety navigation of ships at sea, ships monitor their location obtained from Global Positioning Satellite System (GNSS). In this study, we computed near-real-time positions of a ship at sea using GPS Precise Point Positioning (PPP) technique and analyzed precision of the near-real-time positions. We conducted ship borne GPS observations in the south sea of Korea. To process the GPS data using PPP technique, GIPSY-OASIS (GPS Inferred Positioning System-Orbit Analysis and Simulation Software) developed by the Jet Propulsion Laboratory was used. Antenna phase center variations, ocean tidal loading displacements, and azimuthal gradients of the atmosphere were corrected or estimated as standard procedures of high-precision GIPSY-OASIS data processing. As a result, the precisions of near-real-time positions was ~1cm.

Fast Visualization Technique and Visual Analytics System for Real-time Analyzing Stream Data (실시간 스트림 데이터 분석을 위한 시각화 가속 기술 및 시각적 분석 시스템)

  • Jeong, Seongmin;Yeon, Hanbyul;Jeong, Daekyo;Yoo, Sangbong;Kim, Seokyeon;Jang, Yun
    • Journal of the Korea Computer Graphics Society
    • /
    • v.22 no.4
    • /
    • pp.21-30
    • /
    • 2016
  • Risk management system should be able to support a decision making within a short time to analyze stream data in real time. Many analytical systems consist of CPU computation and disk based database. However, it is more problematic when existing system analyzes stream data in real time. Stream data has various production periods from 1ms to 1 hour, 1day. One sensor generates small data but tens of thousands sensors generate huge amount of data. If hundreds of thousands sensors generate 1GB data per second, CPU based system cannot analyze the data in real time. For this reason, it requires fast processing speed and scalability for analyze stream data. In this paper, we present a fast visualization technique that consists of hybrid database and GPU computation. In order to evaluate our technique, we demonstrate a visual analytics system that analyzes pipeline leak using sensor and tweet data.

Multi-DOF Real-time Hybrid Dynamic Test of a Steel Frame Structure (강 뼈대 구조물의 다자유도 실시간 하이브리드 동적 실험)

  • Kim, Sehoon;Na, Okpin;Kim, Sungil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.2
    • /
    • pp.443-453
    • /
    • 2013
  • The hybrid test is one of the most advanced test methods to predict the structural dynamic behavior with the interaction between a physical substructure and a numerical modeling in the hybrid control system. The purpose of this study is to perform the multi-directional dynamic test of a steel frame structure with the real-time hybrid system and to evaluate the validation of the results. In this study, FEAPH, nonlinear finite element analysis program for hybrid only, was developed and the hybrid control system was optimized. The inefficient computational time was improved with a fixed number iteration method and parallel computational techniques used in FEAPH. Furthermore, the previously used data communication method and the interface between a substructure and an analysis program were simplified in the control system. As the results, the total processing time in real-time hybrid test was shortened up to 10 times of actual measured seismic period. In order to verify the accuracy and validation of the hybrid system, the linear and nonlinear dynamic tests with a steel framed structure were carried out so that the trend of displacement responses was almost in accord with the numerical results. However, the maximum displacement responses had somewhat differences due to the analysis errors in material nonlinearities and the occurrence of permanent displacements. Therefore, if the proper material model and numerical algorithms are developed, the real-time hybrid system could be used to evaluate the structural dynamic behavior and would be an effective testing method as a substitute for a shaking table test.

Design and Implementation of PS-Block Timing Model Using PS-Block Structue (PS-Block 구조를 사용한 PS-Block Timing Model의 설계 및 구현)

  • Kim Yun-Kwan;Shin Won;Chang Chun-Hyon;Kim Tae-Wan
    • The KIPS Transactions:PartD
    • /
    • v.13D no.3 s.106
    • /
    • pp.399-404
    • /
    • 2006
  • A real-time system is used for various systems from small embedded systems to distributed enterprise systems. Because it has a characteristic that provides a service on time, developers should make efforts to keep this property about time when developing real-time applications. As the result of research about real-time system indicates, TMO model supports various functions for time processing according to the real-time concept. And it guarantees response time which developers defined. So developers need a point of reference to define deadline and check the correctness of time. This paper proposes an improved PS-Block as an infrastructure of analysis tools for TMO to present a point of reference. There is a problem that the existing PS-Block has overhead caused by a policy making duplicated blocks. As such, this paper implements a PS-Block Timing Model to reduce the overhead due to block duplication, and defines a base class for searching in PS-Block. The PS-Block Timing Model, using an improved PS-Block structure, offers a point of reference of deadline and an infrastructure of execution time analysis according to the PS-Block configuration policy. Therefore, TMO developers can easily verify deadline of real-time methods, and improve reliability, and reduce development terms.

Sustainability in Real-time Scheduling

  • Burns, Alan;Baruah, Sanjoy
    • Journal of Computing Science and Engineering
    • /
    • v.2 no.1
    • /
    • pp.74-97
    • /
    • 2008
  • A scheduling policy or a schedulability test is defined to be sustainable if any task system determined to be schedulable remains so if it behaves "better" than mandated by its system specifications. We provide a formal definition of sustainability, and subject the concept to systematic analysis in the context of the uniprocessor scheduling of periodic and sporadic task systems. We argue that it is, in general, preferable engineering practice to use sustainable tests if possible, and classify common uniprocessor schedulability tests according to whether they are sustainable or not.

Transition Rules of DATM movements for Analysis of Mobile Distributed Real-Time System (이동 분산 실시간 시스템을 분석하기 위한 DATM 이동 전이 규칙)

  • 이정희;박지연;박주호;이문근
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2002.10d
    • /
    • pp.31-33
    • /
    • 2002
  • 이동 분산 실시간 시스템(MDRTS:Mobile Distributed Real-Time System)은 특정 시간 내에 분산 네트워크를 통한 정보 교환 및 요구된 동작을 실행한다. 그리고 경로, 시간 및 속력에 관한 제약사항에 따라 머신이 이동하는 시스템이다. 본 논문은 MDRTS에서 발생되는 머신의 이동을 분석하기 위해, PATM[1]에 위치 공간 개념을 추가하여 확장한 DATM(Distributed Abstract Timed Machine)을 정의한다. 머신의 이동과 이동을 제약하는 사항들, 경로, 시간 및 속력 등을 나타내는 표현법을 정의하며, 각 제약 사항에 따른 이동에 관한 규칙을 기술한다.

  • PDF

A Packet Scheduling Algorithm for High-speed Portable Internet System (휴대 인터넷 시스템에서의 패킷 스케줄링 알고리즘 연구)

  • Choi, Seong-Hoon
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.30 no.1
    • /
    • pp.59-65
    • /
    • 2007
  • HPI (High-speed Portable Internet) system which provides high speed internet services is going to be commercialized soon. Since HPI provides simultaneously four different service types such as UGS (Unsolicited Grant Service), rtPS (real time Polling Service), nrtPS(non-real time Polling Service), and BE (Best Effort) under different QoS (Quality of Service) requirements and limited wireless channel resources, efficient packet scheduling mechanisms are necessary to increase the utilization of channels as well as to satisfy the various QoS requirements. This study regards the traffic data to be served as time series and proposes a new packet scheduling algorithm based on the nonparametric statistical test. The performance of the newly proposed algorithm is evaluated through the simulation analysis using a simulator that can evaluate the performance of packet scheduling mechanisms under various values of system parameters and measures such as packet delay time, data transmission rate, number of loss packets, and channel utilization.