• Title/Summary/Keyword: Real-time Traffic QoS

Search Result 230, Processing Time 0.026 seconds

A transmit function implementation of wireless LAN MAC with QoS using single transmit FIFO (단일 송신 피포를 이용한 QoS 기능의 무선랜 MAC의 송신 기능 구현)

  • Park, Chan-Won;Kim, Jung-Sik;Kim, Bo-Kwan
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.237-239
    • /
    • 2004
  • Wireless LAN Voice over IP(VoIP) equipment needs Quality-of-Service(QoS) with priority for processing real-time traffic. This paper shows transmit function implementation of wireless LAN(WLANs) media access control(MAC) support VoIP, and it has an advantage of guarantee of QoS and is adaptable to VoIP or mobile wireless equipment. The IEEE 802.11e standard in progress has four queues according to four access categories(AC) for transmit and the MAC transmits the data based on EDCA. The value of AC is from AC0 to AC3 and AC3 has the highest priority. The transmit method implemented at this paper ensure QoS using one transmit FIFO in hardware since real-time traffic data and non real-time traffic data has the different priority. The device driver classifies real-time data and non real-time data and transmit data to hardware with information about data type. The hardware conducts shorter backoff and selects faster AIFS slot for real-time data than it for non real-time data. Therefor It make give the real-time traffic data faster channel access chance than non real-time data and enhances QoS.

  • PDF

Closed-loop Feedback Control for Enhancing QoS in Real-time communication Networks

  • Kim, Hyung-Seok;Kwon, Wook-Hyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.40.1-40
    • /
    • 2001
  • In this paper, control theoretic approaches are proposed to guarantee QoS (Quality of Series) such as packet delay and packet loss of real-time traffic in high-speed communication network. Characteristics of variable rate real-time traÆc in communication networks are described. The mathematical model describing networks including source and destination nodes are suggested. By a traffic control mechanism, it is shown that worst-case end-to-end transfer delay of traffic can be controlled and packet loss can be prevented. The simulation shows results of delay control and buer level control to raise QoS in realtime traffic.

  • PDF

High Performance QoS Traffic Transmission Scheme for Real-Time Multimedia Services in Wireless Networks

  • Kang, Moonsik
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.1 no.3
    • /
    • pp.182-191
    • /
    • 2012
  • This paper proposes a high performance QoS (Quality of Service) traffic transmission scheme to provide real-time multimedia services in wireless networks. This scheme is based on both a traffic estimation of the mean rate and a header compression method by dividing this network model into two parts, core RTP/UDP/IP network and wireless access parts, using the IEEE 802.11 WLAN. The improvement achieved by the scheme means that it can be designed to include a means of provisioning the high performance QoS strategy according to the requirements of each particular traffic flow by adapting the header compression for real-time multimedia data. A performance evaluation was carried out to show the effectiveness of the proposed traffic transmission scheme.

  • PDF

Distributed Control Algorithms for QoS in Wireless Networks Using Wireless Token Ring Protocol (무선토큰링 프로토콜을 사용한 무선 네트워크에서 QoS를 지원하는 분산 제어 알고리즘)

  • 김성철
    • Journal of Korea Multimedia Society
    • /
    • v.7 no.2
    • /
    • pp.187-193
    • /
    • 2004
  • Wireless networks play a very important role in communications today. For example, wireless networks today provide from the basic services like e-mail and FTP to the multimedia applications like Web service. It is obvious that QoS requirements to these diverse applications over wireless networks will continue as in wired networks. Much research has been done to develop QoS supporting algorithms on Internet. But due to the limited bandwidth and varying channel states of the wireless networks, it is difficult to support differentiated service over wireless networks. In this paper we propose the modified wireless token ring protocol supporting QoS to the real-time traffic service node over Internet environments in which non-real-time and real-time traffic service nodes coexist. In the proposed algorithm, the real-time traffic service node gets the priority to take token over the non-real-time traffic service node. So the proposed algorithm support quick transmission of the real-time traffic service node. And this advantage can be obtained with minor modification of the legacy wireless token ing protocol to support QoS. We also consider the lost token recovery mechanism.

  • PDF

A QoS policy experimentation and evaluation on Optical subscriber network Test bed for deploying TPS(Triple Play Service) (TPS를 고려한 광가입자망에서의 QoS 고찰)

  • Lee, Dong-Yeal;Seung, Min-Mo;Kim, Hee-Dong
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2009.08a
    • /
    • pp.63-67
    • /
    • 2009
  • In this paper we propose a QoS policy, which is based on both DSCP and SPQ, appropriate to TPS users on optical subscriber network. Then we experiment and evaluate QoS policy through the test bed which emulates real optical subscriber network. In order to perform effective and real experiment on test bed we make test traffic equivalent to 400 TPS users and give it to test bed. The experimental result shows that no packet loss in real time service traffic such as voice, IPTV occurs during more than 4 hours. We think that our proposed QoS policy is a proper method which guarantees the service quality of real time services on optical subscriber network.

  • PDF

A Research on The Real Time Video Traffic Transmission Mechanism in IP Based Mobile Networks (IP기반 이동네트워크에서 실시간 비디오 트래픽 전송 메카니즘에 관한 연구)

  • 강문식;이준호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.8A
    • /
    • pp.879-888
    • /
    • 2004
  • In this paper, we propose a real time QoS(Quality of Service) guaranteed transmission mechanism for MPEG video traffic at the congested node in IP based networks. Recent spread of the Internet has increased the demands of a real time multimedia service of the quality, Because the type of Internet services can, however, offer the best effort delivery strategies, it is difficult to treat all the types of traffic with differential COS (Class of Service). Most of all, the hierarchical coding method of MPEG data utilizes the reference frame for the motion prediction. The loss of the reference frames makes QoS of the video traffic degraded because the reference frame bit error causes the consecutive packet loss. Therefore we have studied the real time QoS guaranteed mechanism for video traffic by analyzing the previous methods. Computer simulation results show that the proposed scheme has better performance than the previous one.

A Study on the Improvement of Real-Time Traffic QoS using the Delay Guarantee Queue Service Discipline of End-to-End (종단간 지연 큐 서비스 방식을 이용한 실시간 트래픽 QoS 개선에 관한 연구)

  • 김광준;나상동
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.6 no.2
    • /
    • pp.236-247
    • /
    • 2002
  • We propose a cell-multiplexing scheme for the real-time communication service in ATM network and a new service discipline guarantee end-to-end delay based on pseudo-isochronous cell switching. The proposed scheme consists of two level frame hierarchy, upper and lower frame, which is used to assign the bandwidth and to guarantee the requested delay bound, respectively. Since the Proposed algorithm employs two level frame hierarchy, it can overcome the coupling problem which is inherent to the framing strategy It can be comparatively reduce the complexity, and still guarantee the diverse delay bounds of end-to-end. Besides, it consists of two components, traffic controller and scheduller, as the imput traffic description model and regulates the input traffic specification. The function of the traffic controller is to shape real -time traffic to have the same input pattern at every switch along the path. The end-to-end delay is bounded by the scheduller which can limit the delay variation without using per-session jitter controllers, and therefore it can decrease the required buffer size. The proposed algorithm can support the QoS's of non-real time traffic as well as those of real time traffic.

A QoS Framework for Ad-Hoc Networks (Ad-Hoc Network을 위한 QoS 프레임웍)

  • Kim Junhyung;Mo Sangdok;Chung Kwangsue
    • Journal of KIISE:Information Networking
    • /
    • v.32 no.2
    • /
    • pp.134-146
    • /
    • 2005
  • Research about QoS in the ad-hoc networks for stable service of various applications has been needed as the expectation about the realization of the ad-hoc networks grows bigger. Existing researches about QoS in the ad-hoc network had the problems which can not guarantee the quantitative services or create the overhead. In this paper, we propose a novel algorithm of QFAN(QoS Framework for Ad-hoc Networks) the framework to resolve such problems and considered application of the proposed algorithm into the ad-hoc networks. Our model can guarantee the minimum bandwidth of the real-time traffic as minimized the overhead. And, disproportionate distribution of bandwidth problem can resolve by the proposed algorithm through the fair share between real-time traffic and best-effort traffic about available bandwidth. We design both the TiRe(Tiny Reservation) and the ADR(Adaptive Drop Rate) control algorithm to apply the proposed QFAN. Using simulation, we confirm fair share of available bandwidth between real-time traffic and best-effort traffic as guarantee minimum required bandwidth of real-time traffic.

Effective Admission Policy for Multimedia Traffic Connections over Satellite DVB-RCS Network

  • Pace, Pasquale;Aloi, Gianluca
    • ETRI Journal
    • /
    • v.28 no.5
    • /
    • pp.593-606
    • /
    • 2006
  • Thanks to the great possibilities of providing different types of telecommunication traffic to a large geographical area, satellite networks are expected to be an essential component of the next-generation internet. As a result, issues concerning the designing and testing of efficient connection-admission-control (CAC) strategies in order to increase the quality of service (QoS) for multimedia traffic sources, are attractive and at the cutting edge of research. This paper investigates the potential strengths of a generic digital-video-broadcasting return-channel-via-satellite (DVB-RCS) system architecture, proposing a new CAC algorithm with the aim of efficiently managing real-time multimedia video sources, both with constant and high variable data rate transmission; moreover, the proposed admission strategy is compared with a well-known iterative CAC mainly designed for the managing of real-time bursty traffic sources in order to demonstrate that the new algorithm is also well suited for those traffic sources. Performance analysis shows that, both algorithms guarantee the agreed QoS to real-time bursty connections that are more sensitive to delay jitter; however, our proposed algorithm can also manage interactive real-time multimedia traffic sources in high load and mixed traffic conditions.

  • PDF

QoS Improvement Method for Real Time Traffic in Wireless Networks (무선망에서 실시간 트래픽을 위한 QoS 향상 기법)

  • Kim, Nam-Hee;Kim, Byun-Gon
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.6
    • /
    • pp.34-42
    • /
    • 2008
  • MAC(Medium Access Control) is demanded to provide end-to-end QoS(Quality of Service) for a variety of traffic in the wireless networks. When all the traffic is integrated in the channel, the main difficulty of the MAC protocol is how to efficiently support multi-class traffic in the limited bandwidth wireless channel. In this paper, we proposed the dynamic bandwidth slot method for improving QoS of the real time traffics. In this paper, we used in-band scheme to send dynamic parameter and considering buffer size and delay variation, we enabled 2 state bits to send to base station in mobile station. The proposed algorithm is to guarantee QoS of real time traffic and maximize transfer efficiency in wireless networks.