• Title/Summary/Keyword: Real-time Drone image

Search Result 38, Processing Time 0.03 seconds

The Design and Implementation of Mobile Application Solution for Forest Fire based on Drone Photography and Amazon Web Service (AWS)

  • Choi, Si-eun;Bang, Jong-ho
    • Journal of Internet Computing and Services
    • /
    • v.21 no.5
    • /
    • pp.31-37
    • /
    • 2020
  • Last year's Goseong-Sokcho forest fires have highlighted the limitations of extinguishing work for night-time forest fire and the importance of quick identification for information on the spread of forest fire. However, it is not easy to find services that take into account the characteristics of forest fires, as most existing disaster-related mobile applications and research assume various disaster situations rather than just forest fire situations. Therefore, a system that can provide information quickly is needed, taking into account the characteristics of forest fires and the limitations of extinguishing work. In this paper, we propose evacuation route guidance services that bypass areas where fire has already spread, supplement existing methods of extinguishing work, and provide general information on forest fire situations in real time, by putting drones into forest fire situations. It has been implemented to automate image analysis using the Rekognition service of Amazon Web Service (AWS), and the results of fire detection and the T Map API guide the evacuation path. It is expected that the results of this paper will allow efficient and rapid rescue and extinguishing work to be carried out, and further reduce the damage of human life caused by forest fires.

Density map estimation based on deep-learning for pest control drone optimization (드론 방제의 최적화를 위한 딥러닝 기반의 밀도맵 추정)

  • Baek-gyeom Seong;Xiongzhe Han;Seung-hwa Yu;Chun-gu Lee;Yeongho Kang;Hyun Ho Woo;Hunsuk Lee;Dae-Hyun Lee
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.53-64
    • /
    • 2024
  • Global population growth has resulted in an increased demand for food production. Simultaneously, aging rural communities have led to a decrease in the workforce, thereby increasing the demand for automation in agriculture. Drones are particularly useful for unmanned pest control fields. However, the current method of uniform spraying leads to environmental damage due to overuse of pesticides and drift by wind. To address this issue, it is necessary to enhance spraying performance through precise performance evaluation. Therefore, as a foundational study aimed at optimizing drone-based pest control technologies, this research evaluated water-sensitive paper (WSP) via density map estimation using convolutional neural networks (CNN) with a encoder-decoder structure. To achieve more accurate estimation, this study implemented multi-task learning, incorporating an additional classifier for image segmentation alongside the density map estimation classifier. The proposed model in this study resulted in a R-squared (R2) of 0.976 for coverage area in the evaluation data set, demonstrating satisfactory performance in evaluating WSP at various density levels. Further research is needed to improve the accuracy of spray result estimations and develop a real-time assessment technology in the field.

Band Selection Algorithm based on Expected Value for Pixel Classification (픽셀 분류를 위한 기댓값 기반 밴드 선택 알고리즘)

  • Chang, Duhyeuk;Jung, Byeonghyeon;Heo, Junyoung
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.6
    • /
    • pp.107-112
    • /
    • 2022
  • In an embedded system such as a drone, it is difficult to store, transfer and analyze the entire hyper-spectral image to a server in real time because it takes a lot of power and time. Therefore, the hyper-spectral image data is transmitted to the server through dimension reduction or compression pre-processing. Feature selection method are used to send only the bands for analysis purpose, and these algorithms usually take a lot of processing time depending on the size of the image, even though the efficiency is high. In this paper, by improving the temporal disadvantage of the band selection algorithm, the time taken 24 hours was reduced to around 60-180 seconds based on the 40000*682 image resolution of 8GB data, and the use of 7.6GB RAM was significantly reduced to 2.3GB using 45 out of 150 bands. However, in terms of pixel classification performance, more than 98% of analysis results were derived similarly to the previous one.

GPU Acceleration of Range Doppler Algorithm for Real-Time SAR Image Generation (실시간 SAR 영상 생성을 위한 Range Doppler Algorithm의 GPU 가속)

  • Dong-Min Jeong;Woo-Kyung Lee;Myeong-Jin Lee;Yun-Ho Jung
    • Journal of IKEEE
    • /
    • v.27 no.3
    • /
    • pp.265-272
    • /
    • 2023
  • In this paper, a GPU-accelerated kernel of range Doppler algorithm (RDA) was developed for real-time image formation based on frequency modulated continuous wave (FMCW) synthetic aperture radar (SAR). A pinned memory was used to minimize the data transfer time between the host and the GPU device, and the kernel was configured to perform all RDA operations on the GPU to minimize the number of data transfers. The dataset was obtained through the FMCW drone SAR experiment, and the GPU acceleration effect was measured in an intel i7-9700K CPU, 32GB RAM, and Nvidia RTX 3090 GPU environment. Including the data transfer time between host and devices, it was measured to be accelerated up to 3.41 times compared to the CPU, and when only the acceleration effect of operation was measured without including the data transfer time, it was confirmed that it could be accelerated up to 156 times.

Estimation of channel morphology using RGB orthomosaic images from drone - focusing on the Naesung stream - (드론 RGB 정사영상 기반 하도 지형 공간 추정 방법 - 내성천 중심으로 -)

  • Woo-Chul, KANG;Kyng-Su, LEE;Eun-Kyung, JANG
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.25 no.4
    • /
    • pp.136-150
    • /
    • 2022
  • In this study, a comparative review was conducted on how to use RGB images to obtain river topographic information, which is one of the most essential data for eco-friendly river management and flood level analysis. In terms of the topographic information of river zone, to obtain the topographic information of flow section is one of the difficult topic, therefore, this study focused on estimating the river topographic information of flow section through RGB images. For this study, the river topography surveying was directly conducted using ADCP and RTK-GPS, and at the same time, and orthomosiac image were created using high-resolution images obtained by drone photography. And then, the existing developed regression equations were applied to the result of channel topography surveying by ADCP and the band values of the RGB images, and the channel bathymetry in the study area was estimated using the regression equation that showed the best predictability. In addition, CCHE2D flow modeling was simulated to perform comparative verification of the topographical informations. The modeling result with the image-based topographical information provided better water depth and current velocity simulation results, when it compared to the directly measured topographical information for which measurement of the sub-section was not performed. It is concluded that river topographic information could be obtained from RGB images, and if additional research was conducted, it could be used as a method of obtaining efficient river topographic information for river management.

A Study on the Exploration Device of the Disaster Site Using Drones (드론을 이용한 재난 현장 탐사 장치에 대한 연구)

  • Nam, Kang-Hyun;Jang, Min-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.579-586
    • /
    • 2019
  • The purpose of this study is to determine the rapid saving of life through the drones when natural disasters such as earthquake and fire occur. Drones are equipped with riders, temperature, hazardous gas sensors and wireless cameras are registered with the application server for monitoring the disaster site and real-time monitoring functions are performed to identify the situation on site before rescuing personnel are active. When monitoring finds a person to save, the application server provides real-time image information for effective life-saving.

Development of Real-time Traffic Information Generation Technology Using Traffic Infrastructure Sensor Fusion Technology (교통인프라 센서융합 기술을 활용한 실시간 교통정보 생성 기술 개발)

  • Sung Jin Kim;Su Ho Han;Gi Hoan Kim;Jung Rae Kim
    • Journal of Information Technology Services
    • /
    • v.22 no.2
    • /
    • pp.57-70
    • /
    • 2023
  • In order to establish an autonomous driving environment, it is necessary to study traffic safety and demand prediction by analyzing information generated from the transportation infrastructure beyond relying on sensors by the vehicle itself. In this paper, we propose a real-time traffic information generation method using sensor convergence technology of transportation infrastructure. The proposed method uses sensors such as cameras and radars installed in the transportation infrastructure to generate information such as crosswalk pedestrian presence or absence, crosswalk pause judgment, distance to stop line, queue, head distance, and car distance according to each characteristic. create information An experiment was conducted by comparing the proposed method with the drone measurement result by establishing a demonstration environment. As a result of the experiment, it was confirmed that it was possible to recognize pedestrians at crosswalks and the judgment of a pause in front of a crosswalk, and most data such as distance to the stop line and queues showed more than 95% accuracy, so it was judged to be usable.

Development of a Method for Calculating the Allowable Storage Capacity of Rivers by Using Drone Images (드론 영상을 이용한 하천의 구간별 허용 저수량 산정 방법 개발)

  • Kim, Han-Gyeol;Kim, Jae-In;Yoon, Sung-Joo;Kim, Taejung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.2_1
    • /
    • pp.203-211
    • /
    • 2018
  • Dam discharge is carried out for the management of rivers and area around rivers due to rainy season or drought. Dam discharge should be based on an accurate understanding of the flow rate that can be accommodated in the river. Therefore, understanding the allowable storage capacity of river is an important factor in the management of the environment around the river. However, the methods using water level meters and images, which are currently used to determine the allowable flow rate of rivers, show limitations in terms of accuracy and efficiency. In order to solve these problems, this paper proposes a method to automatically calculate the allowable storage capacity of river based on the images taken by drone. In the first step, we create a 3D model of the river by using the drone images. This generation process consists of tiepoint extraction, image orientation, and image matching. In the second step, the allowable storage capacity is calculated by cross section analysis of the river using the generated river 3D model and the road and river layers in the target area. In this step, we determine the maximum water level of the river, extract the cross-sectional profile along the river, and use the 3D model to calculate the allowable storage capacity for the area. To prove our method, we used Bukhan river's data and as a result, the allowable storage volume was automatically extracted. It is expected that the proposed method will be useful for real - time management of rivers and surrounding areas and 3D models using drone.

Development of small multi-copter system for indoor collision avoidance flight (실내 비행용 소형 충돌회피 멀티콥터 시스템 개발)

  • Moon, Jung-Ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.102-110
    • /
    • 2021
  • Recently, multi-copters equipped with various collision avoidance sensors have been introduced to improve flight stability. LiDAR is used to recognize a three-dimensional position. Multiple cameras and real-time SLAM technology are also used to calculate the relative position to obstacles. A three-dimensional depth sensor with a small process and camera is also used. In this study, a small collision-avoidance multi-copter system capable of in-door flight was developed as a platform for the development of collision avoidance software technology. The multi-copter system was equipped with LiDAR, 3D depth sensor, and small image processing board. Object recognition and collision avoidance functions based on the YOLO algorithm were verified through flight tests. This paper deals with recent trends in drone collision avoidance technology, system design/manufacturing process, and flight test results.

Quality Evaluation of Drone Image using Siemens star (Siemens star를 이용한 드론 영상의 품질 평가)

  • Lee, Jae One;Sung, Sang Min;Back, Ki Suk;Yun, Bu Yeol
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.40 no.3
    • /
    • pp.217-226
    • /
    • 2022
  • In the view of the application of high-precision spatial information production, UAV (Umanned Aerial Vehicle)-Photogrammetry has a problem in that it lacks specific procedures and detailed regulations for quantitative quality verification methods or certification of captured images. In addition, test tools for UAV image quality assessment use only the GSD (Ground Sample Distance), not MTF (Modulation Transfer Function), which reflects image resolution and contrast at the same time. This fact makes often the quality of UAV image inferior to that of manned aerial image. We performed MTF and GSD analysis simultaneously using a siemens star to confirm the necessity of MTF analysis in UAV image quality assessment. The analyzing results of UAV images taken with different payload and sensors show that there is a big difference in σMTF values, representing image resolution and the degree of contrast, but slightly different in GSD. It concluded that the MTF analysis is a more objective and reliable analysis method than just the GSD analysis method, and high-quality drone images can only be obtained when the operator make images after judging the proper selection the sensor performance, image overlaps, and payload type. However, the results of this study are derived from analyzing only images acquired by limited sensors and imaging conditions. It is therefore expected that more objective and reliable results will be obtained if continuous research is conducted by accumulating various experimental data in related fields in the future.