In this paper, the problems of the conventional special-purpose array processor such as the deficiency of flexibility have been investigated. Then, a new modified methodology has been suggested and applied to obtain the common solution of the three typical App algorithms like SP(Shortest Path), TC(Transitive Closure), and MST(Minimun Spanning Tree) among the various APP algorithms using the similar method to obtain the solution. In the newly proposed APP parallel algorithm, real-time Processing is possible, without the structure enhancement and the functional restriction. In addition, we design 2-demensional bit-parallel low-triangular systolic array processor and the 1-PE in detail. For its evaluation, we consider its computational complexity according to bit-processing method and describe relationship of total chip size and execution time. Therefore, the proposed processor obtains, on which a large data inputs in real-time, 3n-4 execution time which is optimal o(n) time complexity, o(n$^{2}$) space complexity which is the number of total gate and pipeline period rate is one.
A deep learning based real-time painting surface inspection algorithm is proposed herein, designed for developing an autonomous inspection drone. The painting surface inspection is usually conducted manually. However, the manual inspection has a limitation in obtaining accurate data for correct judgement on the surface because of human error and deviation of individual inspection experiences. The best method to replace manual surface inspection is the vision-based inspection method with a camera, using various image processing algorithms. Nevertheless, the visual inspection is difficult to apply to surface inspection due to diverse appearances of material, hue, and lightning effects. To overcome technical limitations, a deep learning-based pattern recognition algorithm is proposed, which is specialized for painting surface inspections. The proposed algorithm functions in real time on the embedded board mounted on an autonomous inspection drone. The inspection results data are stored in the database and used for training the deep learning algorithm to improve performance. The various experiments for pre-inspection of painting processes are performed to verify real-time performance of the proposed deep learning algorithm.
As a kind of 2D spatial coordinate transform, image warping is a basic image processing technique utilized in various applications. Though image warping algorithm is composed of relatively simple operations such as memory accesses and computations of weighted average, real-time implementations on embedded vision systems suffer from limited computational power because the simple operations are iterated as many times as the number of pixels. This paper presents a real-time implementation of a look-up table(LUT)-based image warping using an FPGA. In order to ensure sufficient data transfer rate from memories storing mapping LUT and image data, appropriate memory devices are selected by analyzing memory access patterns in an LUT-based image warping using backward mapping. In addition, hardware structure of a parallel and pipelined architecture is proposed for fast computation of bilinear interpolation using fixed-point operations. Accuracy of the implemented hardware is verified using a synthesized test image, and an application to real-time lens distortion correction is exemplified.
현재 대부분의 선박은 해상에서의 안전한 운항을 위하여 GPS를 이용하여 선박 위치를 파악하고 있다. 이 연구에서는 GPS 정밀단독측위기법을 이용하여 준실시간으로 해상 선박의 위치를 결정하고, 그 정밀도를 분석하였다. 이를 위하여 선박에 GPS 장비를 설치하여 남해안 관측을 실시하였다. 정밀단독측위 기법을 이용한 GPS 관측데이터 처리를 위하여 JPL에서 개발한 GIPSY-OASIS를 이용하였으며, 안테나 위상 중심 변동량과 해양 조석하중에 의한 지각 변동량, 그리고 방위각 방향으로의 대류층 지연량을 보정하였다. 그 결과 이 연구에서 산출한 준실시간 좌표는 ~1cm 수준의 정밀도를 달성하였다.
일반적으로 SNS (social network service) 데이터는 정형, 비정형 데이터가 섞여 빠르게 생성되는 빅데이터의 특성을 갖기 때문에 실시간 수집/저장/분석에 많은 어려움이 있다. 본 논문에서는 이러한 SNS 데이터의 분석에 활용할 수 있는 Apache Storm 기반 실시간 동적 데이터 시각화 기술을 제안한다. Storm은 대표적인 빅데이터 기술 중 하나로, 실시간으로 수집되는 데이터를 분산 환경에서 처리 및 분석하는 소프트웨어 플랫폼이다. 본 논문은 Storm을 사용하여 빠르게 발생하는 트위터(Twitter) 데이터를 수집 및 집계하고, 태그 클라우드를 통해 그 결과를 동적으로 표현하고자 한다. 이를 위해, 사용자가 요구하는 키워드를 입력받고 해당 키워드를 통한 시각화 결과를 실시간으로 확인할 수 있는 웹 인터페이스를 설계 및 구현한다. 또한, 각각의 태그 클라우드 결과를 비교하여 올바로 시각화되었는지 확인한다. 본 연구를 통해, 사용자는 관심있는 주제가 SNS에서 어떻게 변화하고 있는지 직관적으로 판단할 수 있게 되며, 시각화 결과는 주제별 트렌드 분석, 고객 니즈 파악 등 다른 서비스에도 활용이 가능하다.
The production and procurement of shipbuilding and offshore equipment is an important competitive factor in the shipbuilding and offshore industry. Recently, ICT-based digital technology has been rapidly applied to the manufacturing industry following the Fourth Industrial Revolution. Under the digital transformation, real-time data interface technology based on SCM (Supply Chain Management) is emerging as an important tool to improve the efficiency of the equipment manufacturing process. In this study, the characteristics and advantages and disadvantages of interface technologies of web-based data interface technologies were compared and analyzed. The performance was compared between theoretical evaluation based on technical features and practical application cases. As a result, it was confirmed that GraphQL is useful for selective data processing, but there is a problem with optimization, and REST API has a problem with receiving data due to a fixed data structure. Therefore, this study aims to suggest ways to utilize and optimize these data interface technologies.
마이크로서비스 아키텍쳐(Microservice Architecture)는 실시간 실감 미디어 방송시스템과 같이 대규모 분산시스템에 적합한 서비스 아키텍쳐의 하나이다. 스케일-아웃(Scale-Out)기법 과 같은 수평적 성능 확장이 쉽기 때문에 최근 넷플릭스나 트위터와 같은 서비스 플랫폼 업체들이 앞다투어 이와 같은 시스템을 도입하고 있다. 또한 마이크로 서비스 아키텍쳐는 기존의 REST와 같은 웹 API에서 처리하기 어려운 영상처리나 실시간 데이터 분석 등을 비동기 기반의 프로세싱를 이용하여 처리 가능하게 하고 있다. 본 논문은 IoT 센서 데이터 분석이나 대용량 실감미디어를 실시간으로 편집하는 클라우드 기반 영상편집과 같은 다수의 이벤트들이 스트림으로 발생하며 플랫폼 내에서 비동기로 처리하는 상황에서 이벤트의 처리 순서가 보장되지 않음을 실험으로 증명하고 이에 알맞은 비동기 기반 마이크로서비스에 적용 가능한 이벤트 스트림 처리 프레임워크를 제안한다.
본 논문에서는 영상 통신 채널 상에서 발생하는 잡음을 효과적으로 제거하기 위해 터보코드를 사용하였다. 터보코드는 복호 성능이 우수하지만 시스템의 복잡도와 복호 과정의 시간지연 때문에 실시간 통신에는 부적합하다는 단점이 있다. 이 문제를 극복하기 위해, 본 논문에서는 터보코드의 부·복호기에 사용되는 인터리버의 크기를 감소시켜 영상 데이터를 전송 할 때 소요되는 시간지연을 줄이는 새로운 세미 랜덤(Semi-Random)인터리버 알고리즘을 제안하였다. 세미 랜덤 인터리버 알고리즘은 입력 프레임의 길이를 1/2 크기만큼 인터리버를 구성하고, 인터리버 내에 데이터를 입력할 때는 블록 인터리버 처럼 행으로 입력하며, 데이터를 읽을 때는 랜덤하게 읽음과 동시에 다음 데이터가 그 주소 번지에 위치하게 된다. 그러므로, 기존의 블록, 대각, 랜덤 인터리버와 알고리즘의 복잡도를 비교할 시 그 복잡도가 1/2로 감소되어 세미 랜덤 인터리버를 터보코드에 적용할 때 영상 데이터를 실시간 처리할 수 있다.
Recently, during disasters occurrence, dealing with emergencies has been handled well by the early transmission of disaster relating notifications on social media networks (e.g., Twitter or Facebook). Intuitively, with their characteristics (e.g., real-time, mobility) and big communities whose users could be regarded as volunteers, social networks are proved to be a crucial role for disasters response. However, the amount of data transmitted during disasters is an obstacle for filtering informative messages; because the messages are diversity, large and very noise. This large volume of data could be seen as Social Big Data (SBD). In this paper, we proposed a big data platform for collecting and analyzing disasters' data from SBD. Firstly, we designed a collecting module; which could rapidly extract disasters' information from the Twitter; by big data frameworks supporting streaming data on distributed system; such as Kafka and Spark. Secondly, we developed an analyzing module which learned from SBD to distinguish the useful information from the irrelevant one. Finally, we also designed a real-time visualization on the web interface for displaying the results of analysis phase. To show the viability of our platform, we conducted experiments of the collecting and analyzing phases in 10 days for both real-time and historical tweets, which were about disasters happened in South Korea. The results prove that our big data platform could be applied to disaster information based systems, by providing a huge relevant data; which can be used for inferring affected regions and victims in disaster situations, from 21.000 collected tweets.
기존의 예측 알고리즘들은 실시간 환경에서 학습 데이터 처리에서 오는 시간지연 문제, 구현의 어려움 등으로 개인화된 실시간 서비스를 제공하는 컨텍스트 인식 환경에서 사용하기에 적합하지 않다. 본 논문에서는 사용자 모델을 이용하여 컨텍스트 예측 알고리즘의 처리시간 단축과 예측 정확도를 향상시키기 위한 연구를 제안한다. 컨텍스트 예측을 위하여 사용자의 컨텍스트 중에서 이동경로를 사용한다. 이동경로를 기반으로 시계열 분석 방법을 통하여 사용자 모델을 생성하고, 생성된 사용자 모델을 시퀀스 매칭 방법을 이용하여 사용자의 컨텍스트를 예측한다. 기존 예측 알고리즘과 본 연구에서 제안한 예측 알고리즘을 시뮬레이션을 통하여 처리시간 및 예측 정확도를 비교한 결과, 실시간 서비스 환경에서 예측 정확도는 기존 예측 알고리즘들과 비슷한 결과를 보였고, 처리시간은 사용자 모델을 사용한 경우가 시퀀스 매칭을 사용한 경우보다 평균 40% 정도 감소시킬 수 있음을 알 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.