• Title/Summary/Keyword: Real-time Analysis

Search Result 6,806, Processing Time 0.034 seconds

Road Surface Data Collection and Analysis using A2B Communication in Vehicles from Bearings and Deep Learning Research

  • Young-Min KIM;Jae-Yong HWANG;Sun-Kyoung KANG
    • Korean Journal of Artificial Intelligence
    • /
    • v.11 no.4
    • /
    • pp.21-27
    • /
    • 2023
  • This paper discusses a deep learning-based road surface analysis system that collects data by installing vibration sensors on the 4-axis wheel bearings of a vehicle, analyzes the data, and appropriately classifies the characteristics of the current driving road surface for use in the vehicle's control system. The data used for road surface analysis is real-time large-capacity data, with 48K samples per second, and the A2B protocol, which is used for large-capacity real-time data communication in modern vehicles, was used to collect the data. CAN and CAN-FD commonly used in vehicle communication, are unable to perform real-time road surface analysis due to bandwidth limitations. By using A2B communication, data was collected at a maximum bandwidth for real-time analysis, requiring a minimum of 24K samples/sec for evaluation. Based on the data collected for real-time analysis, performance was assessed using deep learning models such as LSTM, GRU, and RNN. The results showed similar road surface classification performance across all models. It was also observed that the quality of data used during the training process had an impact on the performance of each model.

A Study on the Real-Time Analysis of a 6×6 Autonomous Vehicle (6×6 자율주행 차량의 실시간 해석을 위한 연구)

  • Cho, Du-Ho;Lee, Jung-Han;Yi, Ki-Chang;Yoo, Wan-Suk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.12
    • /
    • pp.1433-1441
    • /
    • 2009
  • In multibody dynamic analysis, one of the most important problems is to reduce computation times for real-time simulation. This paper presents the derivation procedure of equations of motion of a 6${\times}$6 autonomous vehicle in terms of chassis local coordinates which do not require coordinates transformation matrix to enhance efficiency for real-time dynamic analysis. Also, equations of motion are derived using the VT(velocity transformation) technique and symbolic computation method coded by MATLAB. The Jacobian matrix of the equations of motion of a system is derived from symbolic operations to apply the implicit integration method. The analysis results were compared with ADAMS results to verify the accuracy and approve the feasibility of real time analysis.

Analysis of delay compensation in real-time dynamic hybrid testing with large integration time-step

  • Zhu, Fei;Wang, Jin-Ting;Jin, Feng;Gui, Yao;Zhou, Meng-Xia
    • Smart Structures and Systems
    • /
    • v.14 no.6
    • /
    • pp.1269-1289
    • /
    • 2014
  • With the sub-stepping technique, the numerical analysis in real-time dynamic hybrid testing is split into the response analysis and signal generation tasks. Two target computers that operate in real-time may be assigned to implement these two tasks, respectively, for fully extending the simulation scale of the numerical substructure. In this case, the integration time-step of solving the dynamic response of the numerical substructure can be dozens of times bigger than the sampling time-step of the controller. The time delay between the real and desired feedback forces becomes more striking, which challenges the well-developed delay compensation methods in real-time dynamic hybrid testing. This paper focuses on displacement prediction and force correction for delay compensation in the real-time dynamic hybrid testing with a large integration time-step. A new displacement prediction scheme is proposed based on recently-developed explicit integration algorithms and compared with several commonly-used prediction procedures. The evaluation of its prediction accuracy is carried out theoretically, numerically and experimentally. Results indicate that the accuracy and effectiveness of the proposed prediction method are of significance.

The Development of Real-Time Harmonic Analysis Algorithm in Distribution Transformer (배전용 변압기의 실시간 고조파 분석 알고리즘 개발)

  • Park, Chul-Woo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.3
    • /
    • pp.43-49
    • /
    • 2013
  • Recently harmonics flowing into power system is increasing as the usage of semiconductor equipments and switching mode power equipments are increasing. Harmonics cause problems such as heat increasing and reduction in capacity of transformers, especially the harmonics flowing into a distribution transformer can lead to the lifetime reduction of transformer. In this paper, we are about to develop a device that can monitor harmonics in real-time as it is affixed to a distribution transformer. Unlike the existing expensive harmonic analysis device, a new harmonic analysis algorithm is proposed in order to implement low-cost equipment. The real-time harmonic analysis algorithm proposed in this paper allows implementation on low performance microcontrollers, thus it can monitor the harmonic in real-time as it is individually affixed to the transformer. Therefore, it would improve the reliability of the transformer and stable power system operation would be possible as it can prevent the transformer accidents in advance.

InTouch HMI Development to Real-Time Power System Analysis (실시간 전력 계통 해석을 위한 InTouch HMI 구현)

  • Ahn, Chang-Han;Lee, Sang-Deok;Park, Ji-Ho;Chang, Byung-Hoon;Lee, Hyun-Chul;Lee, Geun-Joon;Baek, Young-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2322-2327
    • /
    • 2009
  • Uncertainty of power system operation increases due to complexity and facilities diversification in the power system. Therefore the importance of SCADA(Supervisory Control and Data Acquisition) system which obtain and manage the actual data in real-time is very important. Accordingly in the studies of power system analysis, the efforts to include real-time power system analysis in simulation and applications are made in many ways. The real-time communication characteristics of SCADA system is considered so as to develop the power system analysis program that matches actual system conditions. The observation and management of SCADA system is realized by Intouch which is mainly used for factory automation and PSS/E(Power System Simulator for Engineers) provides real time system data. SQL DB and Python language is used for real-time communication between the softwares. It is very comfortable to use the various functions in Intouch WindowMaker.

Study on Real-time Parallel Processing Simulator for Performance Analysis of Missiles (유도탄 성능분석을 위한 실시간 병렬처리 시뮬레이터 연구)

  • Kim Byeong-Moon;Jung Soon-Key
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.84-91
    • /
    • 2005
  • In this paper, we describe the real-time parallel processing simulator developed for the use of performance analysis of rolling missiles. The real-time parallel processing simulator developed here consists of seeker emulator generating infrared image signal on aircraft, real-time computer, host computer, system unit, and actual equipments such as auto-pilot processor and seeker processor. Software is developed from mathematic models, 6 degree-of-freedom module, aerodynamic module which are resided in real-time computer, and graphic user interface program resided in host computer. The real-time computer consists of six TIC-40 processors connected in parallel. The seeker emulator is designed by using analog circuits coupled with mechanical equipments. The system unit provides interface function to match impedance between the components and processes very small electrical signals. Also real launch unit of missiles is interfaced to simulator through system unit. In order to apply the real-time parallel processing simulator to performance analysis equipment of rolling missiles it is essential to perform the performance verification test of simulator.

Real-Time Characteristic Analysis of a DCS Communication Network for Nuclear Power Plants (원자력 발전소 분산 제어 시스템을 위한 네트워크의 실시간 특성 해석)

  • Lee, Sung-Woo;Yim, Han-Suck
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.5
    • /
    • pp.650-657
    • /
    • 1999
  • In this paper, a real-time communication method using a PICNET-NP(Plant Instrumentation and Control Network for Nuclear Power plant) is proposed with an analysis of the control network requirements of DCS(Distributed Control System) in unclear power plants. The method satisfies deadline in case of worst data traffics by considering aperiodic and periodic real-time data and others.

  • PDF

Analysis of Real-time Error for Remote Estimation Based on Binary Markov Chain Model (이진 마르코프 연쇄 모형 기반 실시간 원격 추정값의 오차 분석)

  • Lee, Yutae
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.2
    • /
    • pp.317-320
    • /
    • 2022
  • This paper studies real-time error in the context of monitoring a symmetric binary information source over a delay system. To obtain the average real-time error, the delay system is modeled and analyzed as a discrete time Markov chain with a finite state space. Numerical analysis is performed on various system parameters such as state transition probabilities of information source, transmission times, and transmission frequencies. Given state transition probabilities and transmission times, we investigate the relationship between the transmission frequency and the average real-time error. The results can be used to investigate the relationship between real-time errors and age of information.

Implementation technique of execution time predictable real-time mechanism control language (실행시간 예측가능한 실시간 메카니즘 제어언어의 구현기법)

  • 백정현;원유헌
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.22 no.6
    • /
    • pp.1365-1376
    • /
    • 1997
  • In this paper, we designed real time mechanism control language and proposed execution time analysis technique. It was impossible to handle real-time mechanism control programs like programmable controller, numerical controller, distributed control system and robot controller with general purpose programming languages and operating systems because they have to process electric signals generated by thousands of sensors at the same at the same time and in real time. So we made it possible to predict plausibility of time constraint constructs of tiem constraint construct of a real time application program at compilation time by adding time constraint constructs and mechanism synchronization structure to conditional statement and iteration statement of a programming language and developing execution time analysis technique.

  • PDF

Real-Time PCR Analysis of SHV Extended-Spectrum beta-Lactamases Producing Klebsiella pneumoniae (SHV ESBL생성 Klebsiella pneumoniae 균주의 실시간중합효소반응분석)

  • Yang, Byoung-Seon;Yook, Keun-Dol
    • Korean Journal of Clinical Laboratory Science
    • /
    • v.41 no.4
    • /
    • pp.153-157
    • /
    • 2009
  • The production of extended-spectrum ${\beta}$-lactamases ($ESBL_S$) of the TEM or SHV type by bacterial pathogens is a major threat to the use of the clinically important expanded-spectrum cephalosporins. The characterization of the SHV ESBLs producing Klebsiella pneumoniae strains present in clinical isolates is time-consuming processes. We describe here in the development of a novel system, which consists of a real time PCR. We found 11 K. pneumoniae strains to be presumptive strains ESBLs producers by clinical and laboratory standards institute (CLSI) guidelines. The double disk synergy test showed 8 ESBL positive and conventional PCR showed 10 SHV ESBL positive, which were K. pneumoniae strains isolates. By real time PCR analysis, SHV gene in 11 of 11 strains were identified. When sequencing analysis was compared with real time PCR, both analysis were presented 99% similarity. In this study, we used a rapid, sensitive, and specific real-time PCR (RT-PCR) method for detection of the assay SHV ESBL producing K. pneumoniae strains in clinical isolates.

  • PDF