• Title/Summary/Keyword: Real-Time Learning

Search Result 1,722, Processing Time 0.029 seconds

A motion descriptor design combining the global feature of an image and the local one of an moving object (영상의 전역 특징과 이동객체의 지역 특징을 융합한 움직임 디스크립터 설계)

  • Jung, Byeong-Man;Lee, Kyu-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2012.10a
    • /
    • pp.898-902
    • /
    • 2012
  • A descriptor which is suitable for motion analysis by using the motion features of moving objects from the real time image sequence is proposed. To segment moving objects from the background, the background learning is performed. We extract motion trajectories of individual objects by using the sequence of the $1^{st}$ order moment of moving objects. The center points of each object are managed by linked list. The descriptor includes the $1^{st}$ order coordinates of moving object belong to neighbor of the per-defined position in grid pattern, the start frame number which a moving object appeared in the scene and the end frame number which it disappeared. A video retrieval by the proposed descriptor combining global and local feature is more effective than conventional methods which adopt a single feature among global and local features.

  • PDF

Quantified Lockscreen: Integration of Personalized Facial Expression Detection and Mobile Lockscreen application for Emotion Mining and Quantified Self (Quantified Lockscreen: 감정 마이닝과 자기정량화를 위한 개인화된 표정인식 및 모바일 잠금화면 통합 어플리케이션)

  • Kim, Sung Sil;Park, Junsoo;Woo, Woontack
    • Journal of KIISE
    • /
    • v.42 no.11
    • /
    • pp.1459-1466
    • /
    • 2015
  • Lockscreen is one of the most frequently encountered interfaces by smartphone users. Although users perform unlocking actions every day, there are no benefits in using lockscreens apart from security and authentication purposes. In this paper, we replace the traditional lockscreen with an application that analyzes facial expressions in order to collect facial expression data and provide real-time feedback to users. To evaluate this concept, we have implemented Quantified Lockscreen application, supporting the following contributions of this paper: 1) an unobtrusive interface for collecting facial expression data and evaluating emotional patterns, 2) an improvement in accuracy of facial expression detection through a personalized machine learning process, and 3) an enhancement of the validity of emotion data through bidirectional, multi-channel and multi-input methodology.

Land Use Feature Extraction and Sprawl Development Prediction from Quickbird Satellite Imagery Using Dempster-Shafer and Land Transformation Model

  • Saharkhiz, Maryam Adel;Pradhan, Biswajeet;Rizeei, Hossein Mojaddadi;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.1
    • /
    • pp.15-27
    • /
    • 2020
  • Accurate knowledge of land use/land cover (LULC) features and their relative changes over upon the time are essential for sustainable urban management. Urban sprawl growth has been always also a worldwide concern that needs to carefully monitor particularly in a developing country where unplanned building constriction has been expanding at a high rate. Recently, remotely sensed imageries with a very high spatial/spectral resolution and state of the art machine learning approaches sent the urban classification and growth monitoring to a higher level. In this research, we classified the Quickbird satellite imagery by object-based image analysis of Dempster-Shafer (OBIA-DS) for the years of 2002 and 2015 at Karbala-Iraq. The real LULC changes including, residential sprawl expansion, amongst these years, were identified via change detection procedure. In accordance with extracted features of LULC and detected trend of urban pattern, the future LULC dynamic was simulated by using land transformation model (LTM) in geospatial information system (GIS) platform. Both classification and prediction stages were successfully validated using ground control points (GCPs) through accuracy assessment metric of Kappa coefficient that indicated 0.87 and 0.91 for 2002 and 2015 classification as well as 0.79 for prediction part. Detail results revealed a substantial growth in building over fifteen years that mostly replaced by agriculture and orchard field. The prediction scenario of LULC sprawl development for 2030 revealed a substantial decline in green and agriculture land as well as an extensive increment in build-up area especially at the countryside of the city without following the residential pattern standard. The proposed method helps urban decision-makers to identify the detail temporal-spatial growth pattern of highly populated cities like Karbala. Additionally, the results of this study can be considered as a probable future map in order to design enough future social services and amenities for the local inhabitants.

An explosive gas recognition system using neural networks (신경회로망을 이용한 폭발성 가스 인식 시스템)

  • Ban, Sang-Woo;Cho, Jun-Ki;Lee, Min-Ho;Lee, Dae-Sik;Jung, Ho-Yong;Huh, Jeung-Soo;lee, Duk-Dong
    • Journal of Sensor Science and Technology
    • /
    • v.8 no.6
    • /
    • pp.461-468
    • /
    • 1999
  • In this paper, we have implemented a gas recognition system for classification and identification of explosive gases such as methane, propane, and butane using a sensor array and an artificial neural network. Such explosive gases which can be usually detected in the oil factory and LPG pipeline are very dangerous for a human being. We analyzed the characteristics of a multi-dimensional sensor signals obtained from the nine sensors using the principal component analysis(PCA) technique. Also, we implemented a gas pattern recognizer using a multi-layer neural network with error back propagation learning algorithm, which can classify and identify the sorts of gases and concentrations for each gas. The simulation and experimental results show that the proposed gas recognition system is effective to identify the explosive gases. And also, we used DSP board(TMS320C31) to implement the proposed gas recognition system using the neural network for real time processing.

  • PDF

Implementation of Augmented Reality using Marker in e_Book (전자책 속의 마커를 이용한 증강현실 구현)

  • Lee, Jong-Hyeok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.10
    • /
    • pp.2279-2284
    • /
    • 2011
  • Recently as AR(Augmented Reality) is focus of attention, AR is applied to various fields and is expected its valuable use. In this paper, we suggested the method to combine existing e_Book with augmented reality technology based on mobile equipment. We ascertained that augmented reality contents implemented on PC work well in pITX embedded lines (CPU Intel ATOM Z530) and we implemented augmented reality using marker in e_ Book in pITX embedded lines through these experiments. As the result of it, we could show the contents at the same time which had difficulty to be expressed on e_Book before. Also the existing augmented reality contents could be used as it is. Finally we expected that the user could interact with virtual contents or services directly and intuitively in the real world.

Automatic Recognition of the Front/Back Sides and Stalk States for Mushrooms(Lentinus Edodes L.) (버섯 전후면과 꼭지부 상태의 자동 인식)

  • Hwang, H.;Lee, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.19 no.2
    • /
    • pp.124-137
    • /
    • 1994
  • Visual features of a mushroom(Lentinus Edodes, L.) are critical in grading and sorting as most agricultural products are. Because of its complex and various visual features, grading and sorting of mushrooms have been done manually by the human expert. To realize the automatic handling and grading of mushrooms in real time, the computer vision system should be utilized and the efficient and robust processing of the camera captured visual information be provided. Since visual features of a mushroom are distributed over the front and back sides, recognizing sides and states of the stalk including the stalk orientation from the captured image is a prime process in the automatic task processing. In this paper, the efficient and robust recognition process identifying the front and back side and the state of the stalk was developed and its performance was compared with other recognition trials. First, recognition was tried based on the rule set up with some experimental heuristics using the quantitative features such as geometry and texture extracted from the segmented mushroom image. And the neural net based learning recognition was done without extracting quantitative features. For network inputs the segmented binary image obtained from the combined type automatic thresholding was tested first. And then the gray valued raw camera image was directly utilized. The state of the stalk seriously affects the measured size of the mushroom cap. When its effect is serious, the stalk should be excluded in mushroom cap sizing. In this paper, the stalk removal process followed by the boundary regeneration of the cap image was also presented. The neural net based gray valued raw image processing showed the successful results for our recognition task. The developed technology through this research may open the new way of the quality inspection and sorting especially for the agricultural products whose visual features are fuzzy and not uniquely defined.

  • PDF

An Outlier Cluster Detection Technique for Real-time Network Intrusion Detection Systems (실시간 네트워크 침입탐지 시스템을 위한 아웃라이어 클러스터 검출 기법)

  • Chang, Jae-Young;Park, Jong-Myoung;Kim, Han-Joon
    • Journal of Internet Computing and Services
    • /
    • v.8 no.6
    • /
    • pp.43-53
    • /
    • 2007
  • Intrusion detection system(IDS) has recently evolved while combining signature-based detection approach with anomaly detection approach. Although signature-based IDS tools have been commonly used by utilizing machine learning algorithms, they only detect network intrusions with already known patterns, Ideal IDS tools should always keep the signature database of your detection system up-to-date. The system needs to generate the signatures to detect new possible attacks while monitoring and analyzing incoming network data. In this paper, we propose a new outlier cluster detection algorithm with density (or influence) function, Our method assumes that an outlier is a kind of cluster with similar instances instead of a single object in the context of network intrusion, Through extensive experiments using KDD 1999 Cup Intrusion Detection dataset. we show that the proposed method outperform the conventional outlier detection method using Euclidean distance function, specially when attacks occurs frequently.

  • PDF

Hybrid Simulated Annealing for Data Clustering (데이터 클러스터링을 위한 혼합 시뮬레이티드 어닐링)

  • Kim, Sung-Soo;Baek, Jun-Young;Kang, Beom-Soo
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.40 no.2
    • /
    • pp.92-98
    • /
    • 2017
  • Data clustering determines a group of patterns using similarity measure in a dataset and is one of the most important and difficult technique in data mining. Clustering can be formally considered as a particular kind of NP-hard grouping problem. K-means algorithm which is popular and efficient, is sensitive for initialization and has the possibility to be stuck in local optimum because of hill climbing clustering method. This method is also not computationally feasible in practice, especially for large datasets and large number of clusters. Therefore, we need a robust and efficient clustering algorithm to find the global optimum (not local optimum) especially when much data is collected from many IoT (Internet of Things) devices in these days. The objective of this paper is to propose new Hybrid Simulated Annealing (HSA) which is combined simulated annealing with K-means for non-hierarchical clustering of big data. Simulated annealing (SA) is useful for diversified search in large search space and K-means is useful for converged search in predetermined search space. Our proposed method can balance the intensification and diversification to find the global optimal solution in big data clustering. The performance of HSA is validated using Iris, Wine, Glass, and Vowel UCI machine learning repository datasets comparing to previous studies by experiment and analysis. Our proposed KSAK (K-means+SA+K-means) and SAK (SA+K-means) are better than KSA(K-means+SA), SA, and K-means in our simulations. Our method has significantly improved accuracy and efficiency to find the global optimal data clustering solution for complex, real time, and costly data mining process.

Robust Particle Filter Based Route Inference for Intelligent Personal Assistants on Smartphones (스마트폰상의 지능형 개인화 서비스를 위한 강인한 파티클 필터 기반의 사용자 경로 예측)

  • Baek, Haejung;Park, Young Tack
    • Journal of KIISE
    • /
    • v.42 no.2
    • /
    • pp.190-202
    • /
    • 2015
  • Much research has been conducted on location-based intelligent personal assistants that can understand a user's intention by learning the user's route model and then inferring the user's destinations and routes using data of GPS and other sensors in a smartphone. The intelligence of the location-based personal assistant is contingent on the accuracy and efficiency of the real-time predictions of the user's intended destinations and routes by processing movement information based on uncertain sensor data. We propose a robust particle filter based on Dynamic Bayesian Network model to infer the user's routes. The proposed robust particle filter includes a particle generator to supplement the incorrect and incomplete sensor information, an efficient switching function and an weight function to reduce the computation complexity as well as a resampler to enhance the accuracy of the particles. The proposed method improves the accuracy and efficiency of determining a user's routes and destinations.

Position Improvement of a Mobile Robot by Real Time Tracking of Multiple Moving Objects (실시간 다중이동물체 추적에 의한 이동로봇의 위치개선)

  • Jin, Tae-Seok;Lee, Min-Jung;Tack, Han-Ho;Lee, In-Yong;Lee, Joon-Tark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.187-192
    • /
    • 2008
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human Jollowing by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. This paper describes appearance based unknown object tracking with the distributed vision system in intelligent space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.