• Title/Summary/Keyword: Real-Time GPS

Search Result 794, Processing Time 0.026 seconds

정밀단독측위를 이용한 저궤도위성의 궤도결정 정밀도 분석

  • Choe, Jong-Yeon;Lee, Sang-Jeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2011.04a
    • /
    • pp.25.2-25.2
    • /
    • 2011
  • 저궤도위성의 정밀궤도결정은 GPS 위성과 수신기의 시계 공통오차를 제거하기 위해 이중 차분하는 방법으로 요구된 위치 정밀도를 충족시켜왔다. 그러나 빠른 속도로 지구를 회전하는 저궤도위성의 정밀궤도결정에 있어 이러한 이중 차분방법은 지구상에 광범위하게 분포된 지상 IGS 망 처리에 많은 계산 부담을 안고 있다. 그리고 지상 측지뿐만 아니라 저궤도위성을 이용한 기상관측 또는 긴급한 영상 처리 응용분야에서도 고정밀도 준실시간(Near Real Time-NRT) 처리가 요구되고 있다. 고정밀 준실시간 정밀궤도결정을 위한 대안은 이중주파수 GPS 수신기으로 IGS에서 제공되는 정밀궤도력을 갖고 고정밀 단독측위가 가능한 정밀단독측위(precise point positioning) 기법으로 상대측위와 버금가는 위치 정밀도를 얻을 수 있다. 다목적실용위성 5호는 고정밀 합성 레이더 영상 처리를 위해서 요구되는 20 cm 위성 위치 정밀도를 만족시키고, 대기 기상관측을 위해 GPS 전파 엄폐 측정값 수집을 목적으로 고정밀 이중주파수 GPS 수신기(Integrated GPS and Occultation Receiver, IGOR)를 탑재하고 있다. 이 논문에서는 IGOR의 이전 제품인 Blackjack 수신기를 탑재한 GRACE 위성의 실제 GPS 데이터를 사용하여 대략 3 ~ 5cm의 위치 정밀도를 얻었다. 준실시간 정밀궤도결정에서 정밀도 손실없이 궤도결정 처리 지연시간(latency)을 줄이는 것이 중요하다. 이 지연시간은 GPS 측정값의 양에 따라 크게 좌우되기에 GPS 측정값 샘플링 주기를 10초에서 640초까지 변화시켜가면서 정밀도를 분석한 결과, 위치 정밀도 손실없이도 궤도결정처리 지연시간을 단축시킬 수 있음을 제시하고 있다.

  • PDF

A Study of GPS Position Detection Application in Smart Phone (안드로이드 기반 스마트폰 GPS 위치 역추적 어플리케이션 연구)

  • Kim, Min-Gi;Park, Dea-Woo
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2010.10a
    • /
    • pp.248-251
    • /
    • 2010
  • Smart Phones from a PC using the Internet using a multimedia data service provides a scalable and user convenience is provided in the form of an application. Wired and wireless communications, especially with the reduction of royalty free WiFi or the Internet to download the application program on the PC you're using on the Smart Phone. In this paper, the location API in Android-based Smart Phone, using GPS coordinates identified in the latitude and longitude coordinates can be transferred to the server, Android Smart Phone to know the possibility of retracing the location. You are smart trace back information from the user application program design, development, and real-time GPS location signals combined backtrack to read the GPS location in Google Earth application is to study the trace back.

  • PDF

GPS Error Filtering using Continuity of Path for Autonomous Mobile Robot in Orchard Environment (과수원 환경에서 자율주행로봇을 위한 경로 연속성 기반 GPS오정보 필터링 연구)

  • Hyewon Yoon;Jeonghoon Kwak;Kyon-Mo Yang;Byong-Woo Gam;Tae-Gyu Yeo;Jongyoul Park;Kap-Ho Seo
    • The Journal of Korea Robotics Society
    • /
    • v.19 no.1
    • /
    • pp.23-30
    • /
    • 2024
  • This paper studies a GPS error filtering method that takes into account the continuity of the ongoing path to enhance the safety of autonomous agricultural mobile robots. Real-Time Kinematic Global Positioning System (RTK-GPS) is increasingly utilized for robot position evaluation in outdoor environments due to its significantly higher reliability compared to conventional GPS systems. However, in orchard environments, the robot's current position obtained from RTK-GPS information can become unstable due to unknown disturbances like orchard canopies. This problem can potentially lead to navigation errors and path deviations during the robot's movement. These issues can be resolved by filtering out GPS information that deviates from the continuity of the waypoints traversed, based on the robot's assessment of its current path. The contributions of this paper is as follows. 1) The method based on the previous waypoints of the traveled path to determine the current position and trajectory. 2) GPS filtering method based on deviations from the determined path. 3) Finally, verification of the navigation errors between the method applying the error filter and the method not applying the error filter.

A Real-time Context Integration System for Multimodal Sensor Networks using XML (XML을 활용한 멀티모달 센서기반 실시간 컨텍스트 통합 시스템)

  • Yang, Sung-Ihk;Hong, Jin-Hyuk;Cho, Sung-Bae
    • 한국HCI학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.141-146
    • /
    • 2008
  • As the interest about ubiquitous environment is increasing, there are many researches about the services in this environment. These services have important issues in interpreting the users' context, using many kinds of sensors, like PDA, GPS and accelerometers. Low level raw data, which sensors like accelerometers calibrates, are hard to use, and to provide real-time services preprocessing and interpreting the data into context, in real-time, is important. This paper describes a context integrate system which can integrate these sensors and also sensors which has raw data, like accelerometers and physiological sensors, and define the context interpret rule with XML. The proposing system reduces programming operations when adding a sensor to the sensor network or modifying the context interpreting rule by using XML. By using this system, we implemented a real-time data monitoring system which can describe the numeric data into graphs, and assist the user to validate the data and results of the preprocess phase, and also support the external services and applications to use the context of the user.

  • PDF

Van Test for GAK NM (GPS Adapter Kit Navigation Module) Using High Performance INS (고정밀 INS를 이용한 GAK(GPS Adapter Kit) 항법 모듈의 차량 시험)

  • Oh, Sang-Heon;Son, Seok-Bo;Kwon, Seung-Bok;Shin, Don-Ho;Lee, Sang-Jeong;Park, Chan-Sik;Hwang, Dong-Hwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.3
    • /
    • pp.260-267
    • /
    • 2007
  • GPS adapter kit (GAK) is a GPS/INS guided range extension system to improve the accuracy and availability of existing dumb bombs. In this paper, a van test result of GPS/INS navigation module (NM) for guided bomb with GAK has been presented. The NM consists of a commercial MEMS IMU, embedded GPS receiver and navigation computer unit (NCU). The GPS receiver of NM was designed to use multiple antennas for satellite visibility and GPS attitude determination. The real-time navigation software was designed by modularized structure to guarantee the maintainability and extensibility. In order to evaluate the performance of the NM, a van test was preformed by using a high performance INS - Honeywell H-726 MAPS(Modular Azimuth Position System).The van test results show that the GAK NM with GPS attitude measurement gives better navigation performance than a conventional GPS/INS integration and good coasting capabilities under jamming environment.

Enhancement of UAV-based Spatial Positioning Using the Triangular Center Method with Multiple GPS

  • Joo, Yongjin;Ahn, Yushin
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.5
    • /
    • pp.379-388
    • /
    • 2019
  • Recently, a technique for acquiring spatial information data using UAV (Unmanned Aerial Vehicle) has been greatly developed. It is a very crucial issue of the GIS (Geographic Information System) mapping system that passes way point in the unmanned airframe and finally measures the accurate image and stable localization to the desired destination. Though positioning using DGPS (Differential Global Navigation System) or RTK-GPS (Real Time Kinematic-GPS) guarantee highly accurate, they are more expensive than the construction of a single positioning system using a single GPS. In the case of a low-priced single GPS system, the stability of the positioning data deteriorates. Therefore, it is necessary to supplement the uncertainty of the absolute position data of the UAV and to improve the accuracy of the current position data economically in the operating state of the UAV. The aim of this study was to present an algorithm enhancing the stability of position data in a single GPS mode of UAV with multiple GPS. First, the arrangement of multiple GPS receivers through the center of gravity of the UAV were examined. Next, MD (Mahalanobis Distance) is applied to detect instantaneous errors of GPS data in advance and eliminate outliers to increase the accuracy of previously collected multiple GPS data. Processing procedure for multiple GPS reception data by applying the center of the triangular method were presented to improve the position accuracy. Second, UAV navigation systems integrated multiple GPS through configuration of the UAV specifications were implemented. Using the unmanned airframe equipped with multiple GPS receivers, GPS data is measured with the TCM (Triangular Center Method). In addition, UAV equipped with multiple GPS were operated in study area and locational accuracy of multiple GPS of UAV with VRS (Virtual Reference Station) GNSS surveying were compared. The result showed that the error factors are compensated, and the error range are reduced, resulting in the reliability of the corrected value. In conclusion, the result in this paper is expected to realize high-precision position estimation at low cost in UAV using multiple low-cost GPS receivers.

A Core Issues of Read-Time Traffic Information Acquisition Based on GIS and GPS Techniques (GIS와 GPS기법을 활용한 실시간 교통정보산출핵심요소)

  • Kim, Si-Gon;Bae, Sang-Hoon
    • Journal of Korea Spatial Information System Society
    • /
    • v.1 no.1 s.1
    • /
    • pp.69-78
    • /
    • 1999
  • In the 21st century, called as unlimited competition era, the level of transportation service is a key factor to determine the degree of an international competitiveness. In order to get the better transportation service, a various of transportation infrastructures have to be constructed. An efficient transportation operation techniques are to be adopted as well. In this paper, a core factors of real time traffic information acquisition is suggested based on the national basic maps and GPS techniques. In detail, map matching and travel time estimation techniques are developed and applied to Kangnam area for case study.

  • PDF

Development of Dynamic Traffic Information System based on GPS Technology (GPS 기술기반의 동적 도로소통정보시스템 개발)

  • Jang, Yong-Gu
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.14-24
    • /
    • 2006
  • There are many problems and limits in equipments being used for traffic-volume analysis in the country. And traffic-volume information acquired through existing equipments is not provided in real-time. In the case of urban, there are limits on guarantee of trust on comprehending a appropriate road-volume because of difficulty on analyzing traffic-volume density and time series. And it is difficult to applicate in deciding a road policy as existing equipments don't provide the control information of traffic-flow. Therefore, it is necessary to build a road-flow policy rapidly and accurately through the road-flow information that analyze post-processed statistics data using traffic-flow investigation based on real time. In this study, we developed TICS(Traffic Information Collection System) based on GPS which could transmit traffic information transformed from car location information to traffic control center. And we developed TCS(Traffic Control System) based on Web GIS, which could manage and analyze transmitted traffic information, and it could offer handled road-flow information to Web-site in realtime.

  • PDF