• Title/Summary/Keyword: Real-Time GPS

Search Result 792, Processing Time 0.023 seconds

Real Time Transporter Locating System for Shipyard through GNSS and IMU Sensor (GNSS와 IMU센서를 활용한 실시간 트랜스포터 위치추적 시스템)

  • Mun, SeungHwan;An, JongWoo;Lee, Jangmyung
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.56 no.5
    • /
    • pp.439-446
    • /
    • 2019
  • A real time transporter locating system for shipyard has been implemented through the GNSS and IMU sensor. There are a lot of block movements by transporters at the shipyard, which need to be controlled and monitored for conforming to the shipbuilding process. For the precise and safe transporter motion at the yard, a locating system has been developed by using the GNSS and IMU sensors for the transporter. There are several obstacles of the GPS signals for locating the transporter at the yard, such as, buildings and metal structures. To overcome the weakness of the GPS signal transmission, the IMU data have been properly integrated together. The performance of the proposed real time block locating system has been verified through the real experiments with transporters carrying blocks at a shipyard.

Accuracy Evaluation of IGS-RTS Corrections to Stand-Alone Positioning Based on GPS Code-Pseudorange Measurements

  • Kang, Min-Wook;Won, Jihye;Kim, Mi-So;Park, Kwan-Dong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.5 no.2
    • /
    • pp.59-66
    • /
    • 2016
  • The International GNSS Service (IGS) provides the IGS-Real Time Service (IGS-RTS) corrections that can be used in stand-alone positioning in real time. In this study, the positioning accuracy before and after the application of the corrections to broadcast ephemeris by applying the IGS-RTS corrections at code pseudo-range based stand-alone positioning was compared with positioning result using precise ephemeris. The analysis result on IGS-RTS corrections showed that orbit error and clock error were 0.05 m and 0.5 ns compared to precise ephemeris and accuracy improved by about 8.5% compared to the broadcast ephemeris-applied result when the IGS-RTS was applied to positioning. Furthermore, regionally dispersed five observatories were selected to analyze the effect of external environments on positioning accuracy and positioning errors according to location and time were compared as well as the number of visible satellites and position dilution of precision by observatory were analyzed to verify a correlation with positioning error.

Measurement and Simulation of Wide-area Frequency in US Eastern Interconnected Power System

  • Kook, Kyung Soo;Liu, Yilu
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.472-477
    • /
    • 2013
  • An internet-based, real-time GPS synchronized wide-area power system frequency monitoring network(FNET) has been monitoring wide-area power system frequency in continuous time in the United States. This paper analyzes the FNET measurement to the verified disturbances in the US eastern interconnected power system and simulates it using the dynamic system model. By comparing the frequency measurements with its simulation results to the same disturbances in detail, this paper finds that the sequence of monitoring points to detect the frequency fluctuation caused by the disturbances is matched well in the measured data and the simulation results. The similarity comparison index is also proposed to quantify the similarity of the compared cases. The dynamic model based simulation result is expected to compensate for the lack of FNET measurement in its applications.

MEMS GPS/INS Navigation System for an Unmanned Ground Vehicle Operated in Severe Environment (극한 무인 로봇 차량을 위한 MEMS GPS/INS 항법 시스템)

  • Kim, Sung-Chul;Hong, Jin-Seok;Song, Jin-Woo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.2
    • /
    • pp.133-139
    • /
    • 2007
  • An unmanned ground vehicle can perform its mission automatically without human control in unknown environment. To move up to a destination in various surrounding situation, navigational information is indispensible. In order to be adopted for an unmanned vehicle, the navigation box is small, light weight and low power consumption. This paper suggests navigation system using a low grade MEMS IMU for supplying position, velocity, and attitude of an unmanned ground vehicle. This system consists of low cost and light weight MEMS sensors and a GPS receiver to meet unmanned vehicle requirements. The sensors are basically integrated by loosely coupled method using Kalman filter and internal algorithms are divided into initial alignment, sensor error compensation, and complex navigation algorithm. The performance of the designed navigation system has been analyzed by real time field test and compared to commercial tactical grade GPS/INS system.

Design of a Software-Based GPS RF Simulator

  • Noh, Jae Hee;Jo, Gwang Hee;Bu, Sung Chun;Ko, Yo Han;Park, Chansik;Lee, Sang Jeong
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.2
    • /
    • pp.127-134
    • /
    • 2022
  • In this paper, a low-cost, flexible GPS simulator based on USRP is designed as a general-purpose software wireless front-end. The simulator consists of a software GPS signal generator and a USRP-based RF transmitter. The simulator supports various scenarios including specified reception time, quantization bit level, I/Q data types, IF frequency, sampling frequency, SNR, ionospheric delay and user dynamics. The generated GPS RF signal is verified using the spectrum analyzer and off-the-shelf GNSS receivers such as U-blox M8T. The experimental results shows that the difference between generated and real live signal is ignorable. It is expected that designed GPS simulator can be used to GNSS signal design, receiver design and signal processing algorithms such as anti-jamming.

Development of a Location Tracking System for Operation Management of Public Garbage Trucks (공공 청소차 운행 관리를 위한 위치 추적 시스템 개발)

  • Baek, Seung-Won;Kim, Ho-Joon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.909-914
    • /
    • 2011
  • In these days, according to the enhancement of the mobile communication technologies, location based services using the location and movements are vitalized. In this paper, we develop a private vehicle tracking system for garbage truck operation management using GPS and CDMA communication and Open map interface. The terminal equipment attached in vehicle receives the GPS signals and detect the position data including time, longitude, latitude, and altitude. And the terminal sends these data to the server PC through CDMA cellular network in fixed period. The server saves these data into database to process in map server program with which we can view real-time trace of moving vehicle. We apply our system to public garbage truck managing operation and we can increase operation efficiency by examine real-time working and moving path and by present reasonable operation rout.

GPS Carrier Phase Fault Detection with Consideration on User Dynamics (사용자 다이나믹을 고려한 GPS 반송파 고장검출)

  • Won, Dae Hee;Ahn, Jongsun;Sung, Sangkyung;Lee, Eunsung;Heo, Moon-Beom;Lee, Young Jae
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.12
    • /
    • pp.1048-1054
    • /
    • 2012
  • This paper presents a Carrier phase fault detection (FD) method for GPS RTK (Global Positioning System Real Time Kinematic) in dynamic environment. There are various error sources in dynamic environment and these errors decrease the reliability of FD results. Due to the reason, Carrier phase measurements are separated into satellite induced signal, user induced signal and other remaining errors. Especially the user-induced signal is computed by user dynamic which is estimated by time-differenced Carrier phase (TDCP) and Doppler shift. TDCP makes it possible to avoid integer ambiguity resolution. Computer simulation is conducted to verify the suggested method. By applying impulse, step and ramp faults, the FD performance is analyzed.

Case Study of Smart Phone GPS Sensor-based Earthwork Monitoring and Simulation (스마트폰 GPS 센서 기반의 토공 공정 모니터링 및 시뮬레이션 활용 사례연구)

  • Jo, Hyeon-Seok;Yun, Chung-Bae;Park, Ji-Hyeon;Han, Sang Uk
    • Journal of KIBIM
    • /
    • v.12 no.4
    • /
    • pp.61-69
    • /
    • 2022
  • Earthmoving operations account for approximately 25% of construction cost, generally executed prior to the construction of buildings and structures with heavy equipment. For the successful completion of earthwork projects, it is crucial to constantly monitor earthwork equipment (e.g., trucks), estimate productivity, and optimize the construction process and equipment on a construction site. Traditional methods however require time-consuming and painstaking tasks for the manual observations of the ongoing field operations. This study proposed the use of a GPS sensor embedded in a smartphone for the tracking and visualization of equipment locations, which are in turn used for the estimation and simulation of cycle times and production rates of ongoing earthwork. This approach is implemented into a digital platform enabling real-time data collection and simulation, particularly in a 2D (e.g., maps) or 3D (e.g., point clouds) virtual environment where the spatial and temporal flows of trucks are visualized. In the case study, the digital platform is applied for an earthmoving operation at the site development work of commercial factories. The results demonstrate that the production rates of various equipment usage scenarios (e.g., the different numbers of trucks) can be estimated through simulation, and then, the optimal number of tucks for the equipment fleet can be determined, thus supporting the practical potential of real-time sensing and simulation for onsite equipment management.

Map Matching Algorithm Using Continuous GPS Coordinates (연속 GPS좌표를 이용한 지도 매칭 알고리즘)

  • Park, Do-Young;WhangBo, Taeg-Keun
    • Journal of Korea Spatial Information System Society
    • /
    • v.4 no.1 s.7
    • /
    • pp.27-37
    • /
    • 2002
  • Ideas providing an optimal car route using current traffic condition, maintaining the current location and the history of driven route of a car in the main central office, in where GPS signals transmitted from the driving cars are received, have been proposed. Since GPS signals occurred in certain time interval instead of all GPS signals are transmitted from the car due to the cost of transmission, an algorithm that is able to recover the missing GPS signals is required. In this paper, an efficient algorithm, which finds the driven route and the current location of a car fast, is proposed. To verify the efficiency of the proposed algorithm, it is applied to the various real GIS map and it turns out to be very effective.

  • PDF

API Design and Webpage Mapping for GPS NMEA based Google Map (GPS NMEA기반의 Google MAP용 API설계 및 웹페이지 매핑)

  • Kang, Min-Goo
    • Journal of Internet Computing and Services
    • /
    • v.12 no.2
    • /
    • pp.29-36
    • /
    • 2011
  • In this paper, NMEA based Parser programming for Smart-phone was designed at a GPS receiver. The design scheme for Map API and sensor web services was designed according to the Google Map API standards that the position values of NMEA sentences were changed due to XML files. As a result of interfaces between GPS NMEA sentences of Smart-phone and Google Map API, it is possible that real time visual positioning sensor web services about the Google Map mapping from a GPS receiver could be worked on web sever.