• Title/Summary/Keyword: Real-Time Forecasting System

Search Result 202, Processing Time 0.028 seconds

A SE Approach for Real-Time NPP Response Prediction under CEA Withdrawal Accident Conditions

  • Felix Isuwa, Wapachi;Aya, Diab
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.18 no.2
    • /
    • pp.75-93
    • /
    • 2022
  • Machine learning (ML) data-driven meta-model is proposed as a surrogate model to reduce the excessive computational cost of the physics-based model and facilitate the real-time prediction of a nuclear power plant's transient response. To forecast the transient response three machine learning (ML) meta-models based on recurrent neural networks (RNNs); specifically, Long Short Term Memory (LSTM), Gated Recurrent Unit (GRU), and a sequence combination of Convolutional Neural Network (CNN) and LSTM are developed. The chosen accident scenario is a control element assembly withdrawal at power concurrent with the Loss Of Offsite Power (LOOP). The transient response was obtained using the best estimate thermal hydraulics code, MARS-KS, and cross-validated against the Design and control document (DCD). DAKOTA software is loosely coupled with MARS-KS code via a python interface to perform the Best Estimate Plus Uncertainty Quantification (BEPU) analysis and generate a time series database of the system response to train, test and validate the ML meta-models. Key uncertain parameters identified as required by the CASU methodology were propagated using the non-parametric Monte-Carlo (MC) random propagation and Latin Hypercube Sampling technique until a statistically significant database (181 samples) as required by Wilk's fifth order is achieved with 95% probability and 95% confidence level. The three ML RNN models were built and optimized with the help of the Talos tool and demonstrated excellent performance in forecasting the most probable NPP transient response. This research was guided by the Systems Engineering (SE) approach for the systematic and efficient planning and execution of the research.

A Study on the Optimum Navigation Route Safety Assessment System using Real Time Weather Forecasting (실시간 기상 정보를 이용한 최적 항로 안전 평가 시스템의 연구)

  • Choi, Kyong-Soon;Park, Myung-Kyu;Lee, Jin-Ho;Park, Gun-Il
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2007.05a
    • /
    • pp.203-210
    • /
    • 2007
  • This paper treats optimal route safety assessment system at seaway based on weather forecasting data through INMARSAT. Since early times, captain have been sailing to select the optimum route considering the weather, ship loading status condition and operational scheduling empirically. However, it is rare to find digitalized onboard route support system whereas weather facsimile or wave and swell chart are utilized for the officer, based on captain's experience. In this paper, optimal route safety assessment system which is composed of voyage efficiency and safety component is introduced. Optimum route minimized ETA(estimated time of arrival) and fuel consumption that shipping company. and captain are requiring to evaluate for efficient voyage considering speed loss and power increase based on wave added resistance of ship. In the view point of safety, seakeeping prediction is performed based on 3 dimensional panel method Basically, the weather forecast is assumed to be prepared previously in order to operate this system.

  • PDF

Study on the Optimum Route Travel Time for Bus to Improve Bus Schedule Reliability (정시성 확보를 위한 버스노선 당 적정 운행시간 산정 연구)

  • Kim, Min ju;Lee, Young ihn
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.16 no.6
    • /
    • pp.112-123
    • /
    • 2017
  • The accurate forecasting of the public transportation's transit and arrival time has become increasingly important as more people use buses and subways instead of personal vehicles under the government's public transportation promotion policy. Using bus management system (BMS) data, which provide information on the real-time bus location, operation interval, and operation history, it is now possible to analyze the bus schedule reliability. However, the punctuality should always be considered together with the operation safety. Therefore, this study suggests a new methodology to secure both reliability and safety using the BMS data. Unlike other studies, we calculated the bus travel time between two bus stops by dividing the total travel length into 6 sections using 5 different measuring points. In addition, the optimal travel time for each bus route was proposed by analyzing the mean, standard deviation and coefficient of variation of the each section's measurement. This will ensure the reliability, safety and mobility of the bus operation.

DER Energy Management System for Optimal Management of Grid-Connected Microgrids (전력망 연계형 마이크로그리드 최적운영을 위한 분산에너지자원 에너지관리시스템)

  • Choi, Jongwoo;Shin, Youngmee;Lee, Il-Woo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.4
    • /
    • pp.932-938
    • /
    • 2017
  • This paper presents the structure of an energy management system for distributed energy resources of a grid-connected microgrid. The energy management system of a grid-connected microgrid collects information of the microgrid such as the status of distributed energy resources and the time varying pricing plan through various protocols. The energy management system performs forecasting and optimization based on the collected information. It derives the operation schedule of distributed energy resources to reduce the microgrid electricity bill. In order to achieve optimal operation, the energy management system should include an optimal scheduling algorithm and a protocol that transfers the derived schedule to distributed energy resources. The energy management system operates as a rolling horizon controller in order to reduce the effect of a prediction error. Derived control schedules are transmitted to the distributed energy resources in real time through the international standard communication protocol.

A Prediction of Precipitation Over East Asia for June Using Simultaneous and Lagged Teleconnection (원격상관을 이용한 동아시아 6월 강수의 예측)

  • Lee, Kang-Jin;Kwon, MinHo
    • Atmosphere
    • /
    • v.26 no.4
    • /
    • pp.711-716
    • /
    • 2016
  • The dynamical model forecasts using state-of-art general circulation models (GCMs) have some limitations to simulate the real climate system since they do not depend on the past history. One of the alternative methods to correct model errors is to use the canonical correlation analysis (CCA) correction method. CCA forecasts at the present time show better skill than dynamical model forecasts especially over the midlatitudes. Model outputs are adjusted based on the CCA modes between the model forecasts and the observations. This study builds a canonical correlation prediction model for subseasonal (June) precipitation. The predictors are circulation fields over western North Pacific from the Global Seasonal Forecasting System version 5 (GloSea5) and observed snow cover extent over Eurasia continent from Climate Data Record (CDR). The former is based on simultaneous teleconnection between the western North Pacific and the East Asia, and the latter on lagged teleconnection between the Eurasia continent and the East Asia. In addition, we suggest a technique for improving forecast skill by applying the ensemble canonical correlation (ECC) to individual canonical correlation predictions.

Development of Predictive Models for Subway Disaster Forecasting (지하철 재난 전조 예측 모델 개발)

  • Park, Mi Yun;Park, Wan Soon;Lee, Jeonghun;Kwon, and Se Gon
    • Journal of Korean Society of Disaster and Security
    • /
    • v.10 no.2
    • /
    • pp.1-6
    • /
    • 2017
  • In the previous research, the research on the development of subway disaster detection system that discovers the disaster early warning of the subway station disaster and the evacuation to the passengers based on the Internet of things. This paper as a follow-up study analyzes the sensor data installed in the station in real time to quickly detect the disaster. In particular, we developed a statistical methodology based on the Mahalanobis distance in consideration of the environment that varies depending on the installation location of the sensor during initial system construction.

A Simulation Study of IT Diffusion by Using System Dynamics (시스템 다이내믹스를 활용한 정보 기술 수용에 대한 동태적 모형 개발 - 휴대 전화 사용을 중심으로 -)

  • Han, Sang-Jun;Lee, Sang-Gun
    • CRM연구
    • /
    • v.1 no.1
    • /
    • pp.49-69
    • /
    • 2006
  • Previous studies, Technology Acceptance Model (TAM) and Post Acceptance Model (PAM) have a little limitation in time series analysis. To solve this limitation, we used system dynamics as research methodology and designed simulation model based on TAM and PAM. Moreover, we designed new simulation model which can analyize time series data in customers' demand change from initial acceptance to post acceptance. This study targeted domestic mobile phone market. The simulation results showed that diffusion graph was similar to real data. That means we validated our simulation model. Since the simulation model offers the graph of customer's demand change by time, so it can be useful as a leaning tool. Therefore, we think this study helps IT companies use the model for forecasting of market demand.

  • PDF

Personalized Information Recommendation System on Smartphone (스마트폰 기반 사용자 정보추천 시스템 개발)

  • Kim, Jin-A;Kwon, Eung-Ju;Kang, Sanggil
    • Journal of Information Technology and Architecture
    • /
    • v.9 no.1
    • /
    • pp.57-66
    • /
    • 2012
  • Recently, with a rapidly growing of the mobile content market, a variety of mobile-based applications are being launched. But mobile devices, compared to the average computer, take a lot of effort and time to get the final contents you want to use due to the restrictions such as screen size and input methods. To solve this inconvenience, a recommender system is required, which provides customized information that users prefer by filtering and forecasting the information.In this study, an tailored multi-information recommendation system utilizing a Personalized information recommendation system on smartphone is proposed. Filtering of information is to predict and recommend the information the individual would prefer to by using the user-based collaborative filtering. At this time, the degree of similarity used for the user-based collaborative filtering process is Euclidean distance method using the Pearson's correlation coefficient as weight value.As a real applying case to evaluate the performance of the recommender system, the scenarios showing the usefulness of recommendation service for the actual restaurant is shown. Through the comparison experiment the augmented reality based multi-recommendation services to the existing single recommendation service, the usefulness of the recommendation services in this study is verified.

A review of artificial intelligence based demand forecasting techniques (인공지능 기반 수요예측 기법의 리뷰)

  • Jeong, Hyerin;Lim, Changwon
    • The Korean Journal of Applied Statistics
    • /
    • v.32 no.6
    • /
    • pp.795-835
    • /
    • 2019
  • Big data has been generated in various fields. Many companies have now tried to make profits by building a system capable of analyzing big data based on artificial intelligence (AI) techniques. Integrating AI technology has made analyzing and utilizing vast amounts of data increasingly valuable. In particular, demand forecasting with maximum accuracy is critical to government and business management in various fields such as finance, procurement, production and marketing. In this case, it is important to apply an appropriate model that considers the demand pattern for each field. It is possible to analyze complex patterns of real data that can also be enlarged by a traditional time series model or regression model. However, choosing the right model among the various models is difficult without prior knowledge. Many studies based on AI techniques such as machine learning and deep learning have been proven to overcome these problems. In addition, demand forecasting through the analysis of stereotyped data and unstructured data of images or texts has also shown high accuracy. This paper introduces important areas where demand forecasts are relatively active as well as introduces machine learning and deep learning techniques that consider the characteristics of each field.

Impact of Cumulus Parameterization Schemes with Different Horizontal Grid Sizes on Prediction of Heavy Rainfall (적운 모수화 방안이 고해상도 집중호우 예측에 미치는 영향)

  • Lee, Jae-Bok;Lee, Dong-Kyou
    • Atmosphere
    • /
    • v.21 no.4
    • /
    • pp.391-404
    • /
    • 2011
  • This study investigates the impact of cumulus parameterization scheme (CPS) with different horizontal grid sizes on the simulation of the local heavy rainfall case over the Korean Peninsula. The Weather Research and Forecasting (WRF)-based real-time forecast system of the Joint Center for High-impact Weather and Climate Research (JHWC) is used. Three CPSs are used for sensitivity experiments: the BMJ (Betts-Miller-Janjic), GD (Grell-Devenyi ensemble), and KF (Kain-Fritsch) CPSs. The heavy rainfall case selected in this study is characterized by low-level jet and low-level transport of warm and moist air. In 27-km simulations (DM1), simulated precipitation is overestimated in the experiment with BMJ scheme, and it is underestimated with GD scheme. The experiment with KF scheme shows well-developed precipitation cells in the southern and the central region of the Korean Peninsula, which are similar to the observations. All schemes show wet bias and cold bias in the lower troposphere. The simulated rainfall in 27-km horizontal resolution has influence on rainfall forecast in 9-km horizontal resolution, so the statements on 27-km horizontal resolution can be applied to 9-km horizontal resolution. In the sensitivity experiments of CPS for DM3 (3-km resolution), the experiment with BMJ scheme shows better heavy rainfall forecast than the other experiments. The experiments with CPS in 3-km horizontal resolution improve rainfall forecasts compared to the experiments without CPS, especially in rainfall distribution. The experiments with CPS show lower LCL(Lifted Condensation Level) than those without CPS at the maximum rainfall point, and weaker vertical velocity is simulated in the experiments with CPS compared to the experiments without CPS. It means that CPS suppresses convective instability and influences mainly convective rainfall. Consequently, heavy rainfall simulation with BMJ CPS is better than the other CPSs, and even in 3-km horizontal resolution, CPS should be applied to control convective instability. This conclusion can be generalized by conducting more experiments for a variety of cases over the Korean Peninsula.