• Title/Summary/Keyword: Real-Time Data

Search Result 9,406, Processing Time 0.043 seconds

A Probabilistic Analysis for Periodicity of Real-time Tasks

  • Delgado, Raimarius;Choi, Byoung Wook
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.13 no.1
    • /
    • pp.134-142
    • /
    • 2021
  • This paper proposes a probabilistic method in analyzing timing measurements to determine the periodicity of real-time tasks. The proposed method fills a gap in existing techniques, which either concentrate on the estimation of worst-case execution times, or do not consider the stochastic behavior of the real-time scheduler. Our method is based on the Z-test statistical analysis which calculates the probability of the measured period to fall within a user-defined standard deviation limit. The distribution of the measured period should satisfy two conditions: its center (statistical mean) should be equal to the scheduled period of the real-time task, and that it should be symmetrical with most of the samples focused on the center. To ensure that these requirements are met, a data adjustment process, which omits any outliers in the expense of accuracy, is presented. Then, the Z-score of the distribution according to the user-defined deviation limit provides a probability which determines the periodicity of the real-time task. Experiments are conducted to analyze the timing measurements of real-time tasks based on real-time Linux extensions of Xenomai and RT-Preempt. The results indicate that the proposed method is able to provide easier interpretation of the periodicity of real-time tasks which are valuable especially in comparing the performance of various real-time systems.

Development of Real-time Oceanographic Information System for Pelagic Fishery Based on Argo Data (Argo 자료를 이용한 해외어장 실시간 해황정보시스템 개발연구)

  • Yang, Joon-Yong;Suk, Moon-Sik;Suh, Young-Sang;Jeong, Hee-Dong;Heo, Seung
    • Journal of Environmental Science International
    • /
    • v.17 no.4
    • /
    • pp.461-468
    • /
    • 2008
  • Competitive power of pelagic fishery in Korea has been weakened by the domestic and international problems such as wage increase and exclusive economic zone. To make it worse, fishing fleet spends more than 80% of fishing time on searching fishing grounds. Real-time information on oceanographic data, temperature in particular, are likely to contribute to raise efficiency of fishing. However, available data obtained by satellite remote sensing, fixed buoy and drifting buoy, limited to sea surface or fixed positions. ARGO (Array for Real-time Geostrophic Oceanography), an international program, has delivered vertical profiles of temperature and salinity in the upper 2000m of the world ocean every 10 days using freely moving floats. We have developed real-time oceanographic information system for pelagic fishery based on the Argo data which has the contents of vertical profile, horizontal distribution and vertical section of temperature around fishing grounds and searched data can be download unrestrictedly. Comparison of skipjack catch with sea surface temperature and depth of $20^{\circ}C$ derived from Argo data in the West Equatorial Pacific revealed that Argo data are able to help fishing fleet to find fishing grounds and to increase catch.

A Study on the Real-Time Monitoring System of Wind Power in Jeju (제주지역 풍력발전량 실시간 감시 시스템 구축에 관한 연구)

  • Kim, Kyoung-Bo;Yang, Kyung-Bu;Park, Yun-Ho;Mun, Chang-Eun;Park, Jeong-Keun;Huh, Jong-Chul
    • Journal of the Korean Solar Energy Society
    • /
    • v.30 no.3
    • /
    • pp.25-32
    • /
    • 2010
  • A real-time monitoring system was developed for transfer, receive, backup and analysis of wind power data at three wind farm(Hang won, Hankyung and Sung san) in Jeju. For this monitoring system a communication system analysis, a collection of data and transmission module development, data base construction and data analysis and management module was developed, respectively. These modules deal with mechanical, electrical and environmental problem. Especially, time series graphic is supported by the data analysis and management module automatically. The time series graphic make easier to raw data analysis. Also, the real-time monitoring system is connected with wind power forecasting system through internet web for data transfer to wind power forecasting system's data base.

Development of Real-time Process Management System for improving safety of Shop Floor (생산현장의 안전성 향상을 위한 실시간 공정관리 시스템 개발)

  • Lee, Seung Woo;Nam, So Jeong;Lee, Jai Kyung;Lee, Hwa Ki
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.4
    • /
    • pp.171-178
    • /
    • 2013
  • Workers are avoiding production/manufacturing sites due to the poor working environment and concern over safety. Small and medium-sized businesses introduce new equipment to secure safety in the production site or ensure effective process management by introducing the real-time monitoring technique for existing equipment. The importance of real-time monitoring of equipment and process in the production site can also be found in the ANSI/ISA-195 model. Note, however, that most production sites still use paper-based work slip as a process management technique. Data reliability may deteriorate because information on the present condition of the production site cannot be collected/analyzed properly due to manual data writing by the worker. This paper introduces the monitoring and process management technique based on a direct facility interface to secure safety in the field by improving the poor working environment and enhance there liability and real-time characteristics of the production data. Since the data is collected from equipment in real-time directly through the SIB-based interface and PLC-based interface, problems associated with workers' manual data input are expected to be solved; safety can also be improved by enhancing workers' attention to work by minimizing workers' injuries and disruption.

Development of National Qualification Management System for Performance Improvement based on Real-Time Data Sharing (자료공유를 이용한 국가자격관리 성능개선 시스템의 개발)

  • Chang, Young-Hyun;Seo, Jeong-Man
    • Journal of the Korea Society of Computer and Information
    • /
    • v.13 no.4
    • /
    • pp.213-220
    • /
    • 2008
  • The purpose of this paper is to improve efficiency in the construction and operation of a total management system for the national technical qualification through the design and development of a real-time data sharing system which is connected with the management system of external consignment. The current a total management system for the national technical qualification precesses the work depend on information and results which pass over by external IT company. But this method of processing has some unstable elements with regards to information reprocessing, functional supplement, system stability, etc. The proposed system's technological concepts have been tested through a basic simulation pilot program. The pilot program will be expanded to include the local Chamber of Commerce and Industry because the stability of the system was proved through its application to the real-time national technical qualification examination of KCCI(Korea Chamber of Commerce and Industry). The real-time data sharing system has shown great efficiency in terms of system management, and has solved problems of developmental period for information reprocessing and functional supplement. The real-time data sharing system has been given good evaluations with regard to the convenience of their use and the management system for operators and supervisors.

  • PDF

Real-time PCM Data Processing System Development for Flight Test Control (비행시험통제용 실시간 PCM 자료처리시스템 개발)

  • Park, In Hee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.6
    • /
    • pp.825-833
    • /
    • 2021
  • In flight tests, aircraft moves in real time, so it is important that data from instrumentation/measurement equipment used to determine aircraft status are processed in necessary form and transmitted to flight control systems in real time. Therefore, through telemetry data processing time reduction and processing cycle improvement in flight test control computer data processing system, in order to provide faster slave-data and safety judgment information to radar/telemetry slave-data processing, flight safety analysis system, emergency destruction transmission system, etc., we developed a PCM processing system that can be operated independently by installing data processing software that can receive and process PCM data in current telemetry data processing system and radar information at the same time. In this paper, we explain classified software functions in detail, starting with overall structure of PCM data processing systems developed by supplementing existing systems. Additionally, PCM data processing system will be supplemented through system stabilization and test operation.

Real-Time Traffic Information Provision Using Individual Probe and Five-Minute Aggregated Data (개별차량 및 5분 집계 프로브 자료를 이용한 실시간 교통정보 제공)

  • Jang, Jinhwan
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.1
    • /
    • pp.56-73
    • /
    • 2019
  • Probe-based systems have been gaining popularity in advanced traveler information systems. However, the high possibility of providing inaccurate travel-time information due to the inherent time-lag phenomenon is still an important issue to be resolved. To mitigate the time-lag problem, different prediction techniques have been applied, but the techniques are generally regarded as less effective for travel times with high variability. For this reason, current 5-min aggregated data have been commonly used for real-time travel-time provision on highways with high travel-time fluctuation. However, the 5-min aggregation interval itself can further increase the time-lags in the real-time travel-time information equivalent to 5 minutes. In this study, a new scheme that uses both individual probe and 5-min aggregated travel times is suggested to provide reliable real-time travel-time information. The scheme utilizes individual probe data under congested conditions and 5-min aggregated data under uncongested conditions, respectively. As a result of an evaluation with field data, the proposed scheme showed the best performance, with a maximum reduction in travel-time error of 18%.

3D Map-Building using Histogramic In-Motion Mapping in the Eyebot (HIMM을 이용한 3차원 지도작성)

  • 정현룡;김영배
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1127-1130
    • /
    • 2003
  • This paper introduces histogramic in-motion mapping for real-time map building with the Eyebot in motion. A histogram grid used in HIMM is updated through three PSD sensors. HIMM makes it possible to make fast map-building and avoid obstacles in real-time. Fast map-building allows the robot to immediately use the mapped information in real-time obstacle-avoidance algorithms. HIMM has been tested on the Eyebot. The Eyebot sends PSD data to computer and computer builds a 3D-Map based on PSD data.

  • PDF

Real-time distributed industrial process control system (실시간 분산 공정 제어 시스템)

  • 이도영;윤창진;전태웅
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.158-163
    • /
    • 1986
  • This article surveys techniques and issues related to real time process control system developed for industrial control applications. It covers the system architecture and software engineering issues such as the design of data structures, scheduling of asynchronous task activities, management of shared resources, handling of interrupt and implementing an user friendly man-machine interface. Also problems associated with implementing a real-time system that supports dynamic configuration of data base is addressed.

  • PDF

Techniques to Guarantee Real-Time Fault Recovery in Spark Streaming Based Cloud System (Spark Streaming 기반 클라우드 시스템에서 실시간 고장 복구를 지원하기 위한 기법들)

  • Kim, Jungho;Park, Daedong;Kim, Sangwook;Moon, Yongshik;Hong, Seongsoo
    • Journal of KIISE
    • /
    • v.44 no.5
    • /
    • pp.460-468
    • /
    • 2017
  • In a real-time cloud environment, the data analysis framework plays a pivotal role. Spark Streaming meets most real-time requirements among existing frameworks. However, the framework does not meet the second scale real-time fault recovery requirement. Spark Streaming fault recovery time increases in proportion to the transformation history length called lineage. This is because it recovers the last state data based on the cumulative lineage recorded during normal operation. Therefore, fault recovery time is not bounded within a limited time. In addition, it is impossible to achieve a second-scale fault recovery time because it costs tens of seconds to read initial state data from fault-tolerant storage. In this paper, we propose two techniques to solve the problems mentioned above. We apply the proposed techniques to Spark Streaming 1.6.2. Experimental results show that the fault recovery time is bounded and the average fault recovery time is reduced by up to 41.57%.