• 제목/요약/키워드: Real time measurement temperature

Search Result 228, Processing Time 0.035 seconds

Automatic Measurement of Temperature in Real Time by Using an Internal and Data Processing System (인터넷을 이용한 원격 실시간 온도 계측 모니터 및 계측데이터 자동처리 시스템)

  • Kim, Hui-Sik;Kim, Yeong-Il;Seol, Dae-Yeon;Nam, Cheol;O, Heung-Il
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.99-102
    • /
    • 2003
  • In this paper, we have developed a system for monitoring and processing the real time sensor data in remote site through Internet. For realizing this system, measurement equipment and protocol are used to transmit the measurement data to remote server and to process measurement data. In server part, the received data from remote site sensor is converted to text or graphic charts for user. The measurement device in sensor part receives the sensor data form sensor and store the received data to its internal memory for transmitting data to server part through Internet. Also the measurement device can receive data form server. The temperature sensor is corrected to the measurement device located in laboratory and the measurement device measures temperature of laboratory which can be confirmed by user through Internet. We have developed a server program working on the Linux to store measurement data from measurement device to server memory. The program is use for SNMP(Simple Network Management Protocol) to exchange data with measurement device. Also the program changes the measurement data into text and graphic charts for user display. The program is use apache PHP program for user display and inquiry. The real time temperature measurement system can be applly for many parts of industry and living.

  • PDF

The measurement temperature and analysis used embedded system by internet explorer (인터넷 익스플로러를 통한 임베디드 시스템 기반의 온도 측정 및 분석)

  • 김희식;김영일;설대연;남철
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.1003-1006
    • /
    • 2004
  • In this paper have developed a system for monitoring and processing the real time sensor data in remote site through network. For realizing this system, measurement equipment and protocol are used to transmit the measurement data to remote server and to process measurement data. In server part, the received data from remote site sensor is converted to text or graphic charts for user. The measurement device in sensor part receives the sensor data form sensor and store the received data to its internal memory for transmitting data to server part through Internet. Also the measurement device can receive data form server. The temperature sensor is connected to the measurement device located in laboratory and the measurement device measures temperature of laboratory which can be confirmed by user through Internet. We have developed a server programworking on the Linux to store measurement data from measurement device to server memory. The program is use for SNMP(Simple Network Management Protocol) to exchange data with measurement device. Also the program changes the measurement data into text and graphic charts for user display. The program is use apache PHP program for user display and inquiry. The real time temperature measurement system can be apply for many parts of industry and living.

  • PDF

Real Time Temperature Monitoring System Using Optic Fiber Sensor (광섬유 센서를 이용한 실시간 온도 감시 시스템)

  • Lee, Chang-Kun;Kim, Young-Su;Gu, Myeong-Mo;Kim, Bong-Gi
    • Journal of the Korea Society of Computer and Information
    • /
    • v.15 no.12
    • /
    • pp.209-216
    • /
    • 2010
  • Optical Temperature Distribution Sensor Measurement System uses fiber optic sensors itself for temperature measurement is a system which can be measured the Installed surrounding entire temperature as a thousand points by laying a single strand of fiber optic. If there are a lot of measuring points in the distribution Measurement, the cost of each measuring point can be reduced the cost level of existing sensors and at the same time this has the advantage of connecting all sensors as one or two strands of fiber. Generally Optical Fiber is used for communication but Optical Fiber itself can be used for sensor and it has the characteristic of sensor function which can be measured Temperature in the at least each one meter distance. By using these characteristics each sensor and the number of Connection Lines can be reduced. In this paper, we implement a real time temperature monitoring system, which is easy to manage and control for data storage, data management, data storage using a computer and which has the functions of monitoring and correction according to Real-time temperature changes using historical temperature data.

Development of the Soil Thermal Property and Temperature Measurement System for the Real-time Ampacity Estimation of Underground Power Cables (실시간 지중 전력케이블 용량 평가를 위한 토양 열 특성 및 온도 측정 시스템 개발)

  • Jeong, Seong-Hwan;Kim, Dae-Kyeong;Choi, Sang-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2002.07a
    • /
    • pp.22-24
    • /
    • 2002
  • This paper introduces the real-time soil thermal property analyzer and temperature measuring system which is combined with radio telecommunication technique. To measure the thermal parameters in real-time, the radio telecommunication technique are used the personal communication service (PCS) which is in the world-wide serviced commercially firstly by CDMA. The thermal property analyzer has an ability of measuring thermal resistivity, thermal diffusivity and thermal stability. To estimate the soil thermal properties, the curve fitting algorithm by means of the least square method are used. TCP/IP protocol and MTM are used to install the real-time soil thermal property and temperature measurement system at multiple locations along routes of the underground power cables and to reduce the cost of telecommunication.

  • PDF

Application of the Through-Transmitted Ultrasonic Signal for the Identification of Two-Phase Flow Patterns in a Simulated High Temperature Vertical Channel

  • Chu In-Cheol;Song Chul-Hwa;Baek Won-Pil
    • Nuclear Engineering and Technology
    • /
    • v.36 no.1
    • /
    • pp.12-23
    • /
    • 2004
  • In the present study a new measurement technique has been developed, which uses an ultrasonic transmission signal in order to identify the vertical two phase flow pattern. The ultrasonic measurement system developed in the present study not only provides the information required for the identification of vertical two phase flow patterns but also makes real time identification possible. Various vertical two phase flow patterns such as bubbly, slug, churn, annular flow etc. have been accurately identified with the present ultrasonic measurement system under atmospheric condition. In addition, the present test apparatus can practically simulate the ultrasonic propagation characteristics under high temperature and high pressure systems. Therefore, it is expected that the present ultrasonic flow pattern identification technique could be applicable to the vertical two phase flow systems under high temperature and high pressure conditions.

Measurements of Thermal Characteristics for a Micro-Fabricated Thermal Mass Air Flow Sensor With Real-Time Controller (실시간 제어기를 이용한 마이크로 열식 질량공기 유량센서의 열특성 측정)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.8
    • /
    • pp.573-579
    • /
    • 2009
  • A thermal mass air flow sensor, which consists of a micro-heater and thermal sensors on the silicon-nitride thin membrane structure, is micro-fabricated by MEMS processes. Three thermo-resistive sensors, one for the measurement of microheater temperature, the others for the measurement of membrane temperature upstream and downstream of the micro-heater respectively, are used. The micro-heater is operated under the constant temperature difference mode via a real time controller, based on inlet air temperature. Two design models for microfabricated flow sensor are compared with experimental results and confirmed their applicabilities and limitations. The thermal characteristics are measured to find the best flow indicator. It is found that two normalized temperature indicators can be adopted with some advantages in practice. The flow sensor with this control mode can be adopted for wide capability of high speed and sensitivity in the very low and medium velocity ranges.

A Study on the Real-Time Temperature and Concentration Measurement of Combustion Pipe Flow Field (연소 배관 유동장의 실시간 온도, 농도 측정에 관한 연구)

  • Hong, Jeong Woong;Yoon, Sung Hwan;Jeon, Min Gyu
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.2
    • /
    • pp.86-92
    • /
    • 2022
  • Pipe failure due to thermal fatigue and environmental regulations are increasing the importance of pipe monitoring systems in industrial plants. Since most pipe monitoring systems are focus on external crack inspected, it is necessary to temperature and concentration measuring monitoring system inside the pipe. These systems have spatial uncertainty due to sample inspection by one-point measurement. In addition, real-time measurement is not possible due to the limitation of time delay due to contact measurement. In this study, CT-TDLAS (Computed tomography-Tunable diode laser absorption spectroscopy) apply to overcome the limitations of existing methods. Lasers exhibiting an absorption response at a wavelength of 1395 nm were arranged in a lattice pattern on measuring cell. It showed that the inside of the pipe changed to an unstable combustion state over time.

Development of a Floating Buoy for Monitoring Ocean Environments (해양환경모니터링을 위한 표류부이 개발)

  • Yu, Yung-Ho;Gang, Yong-Soo;Lee, Won-Boo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.705-712
    • /
    • 2009
  • The state changes of ocean covered over 70% of earth surface are one of the greatest factor of weather catastrophe. Recently weather extraordinary events are followed by steep increase of sea water temperature and scientists in various fields are studying and warning the weather changes. In this paper, floating buoy is developed to monitor ocean environments via Orbcomm satellite and a method is proposed to increase measurement accuracy of sea water temperature with common low price temperature sensor. Experimental results are presented to illustrate the usability and effectiveness of the developed system. A web-based real time monitoring system is built to monitor ocean environmental information such as sea and air temperature, salinity according to the position of buoy through the internet for user convenience.

An Empirical Study on Real-Time Temperature and Concentration Measurement Through Optical Absorption Characteristic Analysis of Gas in a Large Combustion System (가스의 광 흡수 특성 분석을 통한 대형 연소시스템 내 실시간 온도 및 농도 계측에 관한 실증 연구)

  • Park, Jiyeon;So, Sunghyun;Park, Daeguen;Ryu, Changkook;Lee, Changyeop;Yoo, Miyeon
    • Journal of the Korean Institute of Gas
    • /
    • v.24 no.5
    • /
    • pp.29-38
    • /
    • 2020
  • It is practically difficult to accurately measure the temperature and concentration of a large combustion systems at industrial sites in real time. Temperature measurement using thermocouple, which are mainly used, is a point-measuring method that is less accurate and less reliable to analyze the wide area range of inner combustion system, and has limitations to internal accessibility. In terms of concentration analysis, most measurement methods use sampling method, which are limited by the difficulty of real-time measurement. As a way to overcome these limitations, laser-based measurement methods have been developed continuously. Laser-based measurement are line-average measurement methods with high representation and precision, which are beneficial for the application of large combustion systems. In this study the temperature and concentration were measured in real time by water vapor and oxygen generated during combustion using Tunable Diode Laser Absorption Spectroscopy (TDLAS). The results showed that the average temperature inside the combustion system was 1330℃ and the mean oxygen concentration was 3.3 %, which showed similar tendency with plant monitoring data.

Measurement of Internal Temperature Distribution for the Evaluation of Focused Ultrasound (FUS) Stimulation Devices (집속초음파 자극기의 성능평가를 위한 팬텀 내부온도 측정)

  • Doh, Il;Joe, Daniel J.;Kim, Sung Mok;Baik, Kyung Min;Kim, Yong Tae;Park, Seung Min
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.147-152
    • /
    • 2022
  • This research is to measure real-time temperature distribution inside a tissue-mimicking phantom for the safety and effectiveness evaluations of focused ultrasound (FUS) device capable of linear scanning stimulation. Since the focusing area of the FUS stimulation device is smaller than diameter of conventional thermal probe and keeps moving, it is impossible to monitor temperature distribution inside the phantom. By using the phantom with a thin film temperature sensor array inserted, real-time temperature change caused by the FUS device was measured. The translation of the measured temperature peak was also tracked successfully. The present phantom had been experimentally proven to be applicable to validate the performance and safety of the therapeutic ultrasound devices.